Skip to content

Generic

Generic

CPU

Represents a generic CPU

A CPU is able to parse opcodes and to find the dataflow of the registers.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
architecture

the architecture of the CPU

bits

the bits of the CPU

endianness

the endianness of the CPU

processor_features

the processor features of the CPU

registers_values

the registers values of the CPU

opcode_to_mmu_regs

the mapping between opcodes and MMU registers

opcode_to_gregs

the mapping between opcodes and general registers

machine

the machine of the CPU

Source code in mmushell/architectures/generic.py
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
class CPU:
    """Represents a generic CPU

    A CPU is able to parse opcodes and to find the dataflow of the registers.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        architecture: the architecture of the CPU
        bits: the bits of the CPU
        endianness: the endianness of the CPU
        processor_features: the processor features of the CPU
        registers_values: the registers values of the CPU
        opcode_to_mmu_regs: the mapping between opcodes and MMU registers
        opcode_to_gregs: the mapping between opcodes and general registers
        machine: the machine of the CPU
    """

    opcode_to_mmu_regs = None
    opcode_to_gregs = None

    @classmethod
    def from_cpu_config(cls, cpu_config, **kwargs):
        """Create a CPU starting from a YAML file descriptor

        Args:
            cpu_config: the YAML file descriptor
            **kwargs: additional arguments

        Returns:
            a new CPU object
        """
        return CPU(cpu_config)

    machine = None

    def __init__(self, params):
        """Initialize the CPU

        Args:
            params: the parameters of the CPU
        """
        self.architecture = params["architecture"]
        self.bits = params["bits"]
        self.endianness = params["endianness"]
        self.processor_features = params.get("processor_features", {})
        self.registers_values = params.get("registers_values", {})

    @staticmethod
    def extract_bits_little(entry, pos, n):
        """Extract bits from an entry in little endian

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> pos) & ((1 << n) - 1)

    @staticmethod
    def extract_bits_big(entry, pos, n):
        """Extract bits from an entry in big endian

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> (32 - pos - n)) & ((1 << n) - 1)

    @staticmethod
    def extract_bits_big64(entry, pos, n):
        """Extract bits from an entry in big endian 64 bits

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> (64 - pos - n)) & ((1 << n) - 1)

    def parse_opcode(self, buff, page_addr, offset):
        """Parse an opcode

        Aimed to be overloaded by child classes

        Args:
            buff: the buffer to parse
            page_addr: the address of the page
            offset: the offset of the opcode

        Returns:
            the parsed opcode
        """
        raise NotImplementedError

    def parse_opcodes_parallel(self, addresses, frame_size, pidx, **kwargs) -> dict:
        """Parse opcodes in parallel

        Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

        Args:
            addresses: the addresses to parse
            frame_size: the size of the frame
            pidx: the process index
            **kwargs: additional arguments

        Returns:
            dictionnary of parsed opcodes
        """
        # Every process sleep a random delay in order to desincronize access to disk and maximixe the throuput
        sleep(uniform(pidx, pidx + 1) // 1000)

        opcodes = {}
        mm = copy(self.machine.memory)
        mm.reopen()

        # Cicle over every frame
        total_elems, iterator = addresses
        for frame_addr in tqdm(
            iterator, position=-pidx, total=total_elems, leave=False
        ):
            frame_buf = mm.get_data(
                frame_addr, frame_size
            )  # We parse memory in PAGE_SIZE chunks

            for idx, opcode in enumerate(
                iter_unpack(self.processor_features["opcode_unpack_fmt"], frame_buf)
            ):
                opcode = opcode[0]
                opcodes.update(
                    self.parse_opcode(
                        opcode, frame_addr, idx * self.processor_features["instr_len"]
                    )
                )

        return opcodes

    def find_registers_values_dataflow(self, opcodes, zero_registers=[]) -> set:
        """Find the dataflow of the registers

        Args:
            opcodes: the opcodes to analyze
            zero_registers: the registers to ignore

        Returns:
            a dictionnary with the dataflow of the registers
        """
        # Miasm require to define a memory() function to access to the underlaying
        # memory layer during the Python translation
        # WORKAROUND: memory() does not permit more than 2 args...
        endianness = self.endianness

        def memory(addr, size):
            return int.from_bytes(self.machine.memory.get_data(addr, size), endianness)

        machine = self.machine.get_miasm_machine()
        vm = self.machine.memory.get_miasm_vmmngr()
        mdis = machine.dis_engine(
            bin_stream_vm(vm), dont_dis_nulstart_bloc=False, loc_db=LocationDB()
        )

        ir_arch = machine.ira(mdis.loc_db)
        py_transl = TranslatorPython()

        # Disable MIASM logging
        logging.getLogger("asmblock").disabled = True

        registers_values = defaultdict(set)
        # We use a stack data structure (deque) in order to also manage parent functions (EXPERIMENTAL not implemented here)
        instr_deque = deque([(addr, opcodes[addr]) for addr in opcodes])
        while len(instr_deque):
            instr_addr, instr_data = instr_deque.pop()

            # Ignore instruction with associated function not found
            if instr_data["f_addr"] == -1:
                continue

            # Do not dataflow instructions with source registers in zero_registers
            # because contain zero
            if instr_data["gpr"] in zero_registers:
                registers_values[instr_data["register"]].add(0x0)
                continue

            # Disable disassemble logging for unimplemented opcodes
            with DisableLogs():
                try:
                    # Initialize dependency graph machinery
                    mdis.dont_dis = [instr_addr + self.processor_features["instr_len"]]
                    asmcfg = mdis.dis_multiblock(instr_data["f_addr"])
                    ircfg = ir_arch.new_ircfg_from_asmcfg(asmcfg)
                    dg = DependencyGraph(ircfg)
                except Exception as e:
                    # Disassembler can raises exception if a JMP address is register dependent,
                    # in that case the analysis fails..
                    # print(e)
                    # traceback.print_exc()
                    continue

            # Collect function informations
            try:
                current_loc_key = next(iter(ircfg.getby_offset(instr_addr)))
                assignblk_index = 0
                current_block = ircfg.get_block(current_loc_key)
                for assignblk_index, assignblk in enumerate(current_block):
                    if assignblk.instr.offset == instr_addr:
                        break
            except Exception as e:
                # If the function graph does not contain the instruction or the disassembler cannot complete the
                # task due to unimplemented instructions next(iter(...)) raises a fatal exception
                # print(e)
                # traceback.print_exc()
                continue

            # Recreate default CPU config registers state and general registers to look for
            bits = self.bits
            gp_registers = [ExprId(reg, bits) for reg in instr_data["gpr"]]
            init_ctx = {
                ExprId(name.upper(), bits): ExprInt(value, bits)
                for name, value in self.registers_values.items()
            }

            # Generate solutions
            loops = 0
            for sol_nb, sol in enumerate(
                dg.get(current_block.loc_key, gp_registers, assignblk_index, set())
            ):
                # The solution contains a loop, we permit only a maximum of 10 solutions with loops...
                if sol.has_loop:
                    loops += 1
                    if loops > 10:
                        break

                # Emulate the blocks chain
                results = sol.emul(ir_arch, ctx=init_ctx)

                # Retrieve the solutions and translate it in a python expression
                for reg_name, reg_value_expr in results.items():
                    try:
                        translated_expr = py_transl.from_expr(reg_value_expr)
                        evaluated_expr = eval(translated_expr)
                        registers_values[instr_data["register"]].add(evaluated_expr)

                    except NameError:
                        # The expression depends on another register which can imply that the function is called
                        # by another one which pass it the value

                        # using parents function drastically slow down (block?) the analysis (EXPERIMENTAL not used here)
                        # for f_parent in instr_data["f_parents"]:
                        #     instr_deque.append((instr_addr, {"register": instr_data["register"],
                        #                                      "gpr": instr_data["gpr"],
                        #                                      "f_addr": f_parent,
                        #                                      "f_parents": []
                        #                                     }))

                        continue

                    except Exception as e:
                        # Possible other exceptions due to MIASM incomplete internal implementation
                        # print(e)
                        # traceback.print_exc()
                        continue

        del vm
        self.machine.memory.free_miasm_memory()
        return registers_values

__init__(params)

Initialize the CPU

Parameters:

Name Type Description Default
params

the parameters of the CPU

required
Source code in mmushell/architectures/generic.py
614
615
616
617
618
619
620
621
622
623
624
def __init__(self, params):
    """Initialize the CPU

    Args:
        params: the parameters of the CPU
    """
    self.architecture = params["architecture"]
    self.bits = params["bits"]
    self.endianness = params["endianness"]
    self.processor_features = params.get("processor_features", {})
    self.registers_values = params.get("registers_values", {})

extract_bits_big(entry, pos, n) staticmethod

Extract bits from an entry in big endian

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
640
641
642
643
644
645
646
647
648
649
650
651
652
@staticmethod
def extract_bits_big(entry, pos, n):
    """Extract bits from an entry in big endian

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> (32 - pos - n)) & ((1 << n) - 1)

extract_bits_big64(entry, pos, n) staticmethod

Extract bits from an entry in big endian 64 bits

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
654
655
656
657
658
659
660
661
662
663
664
665
666
@staticmethod
def extract_bits_big64(entry, pos, n):
    """Extract bits from an entry in big endian 64 bits

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> (64 - pos - n)) & ((1 << n) - 1)

extract_bits_little(entry, pos, n) staticmethod

Extract bits from an entry in little endian

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
626
627
628
629
630
631
632
633
634
635
636
637
638
@staticmethod
def extract_bits_little(entry, pos, n):
    """Extract bits from an entry in little endian

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> pos) & ((1 << n) - 1)

find_registers_values_dataflow(opcodes, zero_registers=[])

Find the dataflow of the registers

Parameters:

Name Type Description Default
opcodes

the opcodes to analyze

required
zero_registers

the registers to ignore

[]

Returns:

Type Description
set

a dictionnary with the dataflow of the registers

Source code in mmushell/architectures/generic.py
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def find_registers_values_dataflow(self, opcodes, zero_registers=[]) -> set:
    """Find the dataflow of the registers

    Args:
        opcodes: the opcodes to analyze
        zero_registers: the registers to ignore

    Returns:
        a dictionnary with the dataflow of the registers
    """
    # Miasm require to define a memory() function to access to the underlaying
    # memory layer during the Python translation
    # WORKAROUND: memory() does not permit more than 2 args...
    endianness = self.endianness

    def memory(addr, size):
        return int.from_bytes(self.machine.memory.get_data(addr, size), endianness)

    machine = self.machine.get_miasm_machine()
    vm = self.machine.memory.get_miasm_vmmngr()
    mdis = machine.dis_engine(
        bin_stream_vm(vm), dont_dis_nulstart_bloc=False, loc_db=LocationDB()
    )

    ir_arch = machine.ira(mdis.loc_db)
    py_transl = TranslatorPython()

    # Disable MIASM logging
    logging.getLogger("asmblock").disabled = True

    registers_values = defaultdict(set)
    # We use a stack data structure (deque) in order to also manage parent functions (EXPERIMENTAL not implemented here)
    instr_deque = deque([(addr, opcodes[addr]) for addr in opcodes])
    while len(instr_deque):
        instr_addr, instr_data = instr_deque.pop()

        # Ignore instruction with associated function not found
        if instr_data["f_addr"] == -1:
            continue

        # Do not dataflow instructions with source registers in zero_registers
        # because contain zero
        if instr_data["gpr"] in zero_registers:
            registers_values[instr_data["register"]].add(0x0)
            continue

        # Disable disassemble logging for unimplemented opcodes
        with DisableLogs():
            try:
                # Initialize dependency graph machinery
                mdis.dont_dis = [instr_addr + self.processor_features["instr_len"]]
                asmcfg = mdis.dis_multiblock(instr_data["f_addr"])
                ircfg = ir_arch.new_ircfg_from_asmcfg(asmcfg)
                dg = DependencyGraph(ircfg)
            except Exception as e:
                # Disassembler can raises exception if a JMP address is register dependent,
                # in that case the analysis fails..
                # print(e)
                # traceback.print_exc()
                continue

        # Collect function informations
        try:
            current_loc_key = next(iter(ircfg.getby_offset(instr_addr)))
            assignblk_index = 0
            current_block = ircfg.get_block(current_loc_key)
            for assignblk_index, assignblk in enumerate(current_block):
                if assignblk.instr.offset == instr_addr:
                    break
        except Exception as e:
            # If the function graph does not contain the instruction or the disassembler cannot complete the
            # task due to unimplemented instructions next(iter(...)) raises a fatal exception
            # print(e)
            # traceback.print_exc()
            continue

        # Recreate default CPU config registers state and general registers to look for
        bits = self.bits
        gp_registers = [ExprId(reg, bits) for reg in instr_data["gpr"]]
        init_ctx = {
            ExprId(name.upper(), bits): ExprInt(value, bits)
            for name, value in self.registers_values.items()
        }

        # Generate solutions
        loops = 0
        for sol_nb, sol in enumerate(
            dg.get(current_block.loc_key, gp_registers, assignblk_index, set())
        ):
            # The solution contains a loop, we permit only a maximum of 10 solutions with loops...
            if sol.has_loop:
                loops += 1
                if loops > 10:
                    break

            # Emulate the blocks chain
            results = sol.emul(ir_arch, ctx=init_ctx)

            # Retrieve the solutions and translate it in a python expression
            for reg_name, reg_value_expr in results.items():
                try:
                    translated_expr = py_transl.from_expr(reg_value_expr)
                    evaluated_expr = eval(translated_expr)
                    registers_values[instr_data["register"]].add(evaluated_expr)

                except NameError:
                    # The expression depends on another register which can imply that the function is called
                    # by another one which pass it the value

                    # using parents function drastically slow down (block?) the analysis (EXPERIMENTAL not used here)
                    # for f_parent in instr_data["f_parents"]:
                    #     instr_deque.append((instr_addr, {"register": instr_data["register"],
                    #                                      "gpr": instr_data["gpr"],
                    #                                      "f_addr": f_parent,
                    #                                      "f_parents": []
                    #                                     }))

                    continue

                except Exception as e:
                    # Possible other exceptions due to MIASM incomplete internal implementation
                    # print(e)
                    # traceback.print_exc()
                    continue

    del vm
    self.machine.memory.free_miasm_memory()
    return registers_values

from_cpu_config(cpu_config, **kwargs) classmethod

Create a CPU starting from a YAML file descriptor

Parameters:

Name Type Description Default
cpu_config

the YAML file descriptor

required
**kwargs

additional arguments

{}

Returns:

Type Description

a new CPU object

Source code in mmushell/architectures/generic.py
599
600
601
602
603
604
605
606
607
608
609
610
@classmethod
def from_cpu_config(cls, cpu_config, **kwargs):
    """Create a CPU starting from a YAML file descriptor

    Args:
        cpu_config: the YAML file descriptor
        **kwargs: additional arguments

    Returns:
        a new CPU object
    """
    return CPU(cpu_config)

parse_opcode(buff, page_addr, offset)

Parse an opcode

Aimed to be overloaded by child classes

Parameters:

Name Type Description Default
buff

the buffer to parse

required
page_addr

the address of the page

required
offset

the offset of the opcode

required

Returns:

Type Description

the parsed opcode

Source code in mmushell/architectures/generic.py
668
669
670
671
672
673
674
675
676
677
678
679
680
681
def parse_opcode(self, buff, page_addr, offset):
    """Parse an opcode

    Aimed to be overloaded by child classes

    Args:
        buff: the buffer to parse
        page_addr: the address of the page
        offset: the offset of the opcode

    Returns:
        the parsed opcode
    """
    raise NotImplementedError

parse_opcodes_parallel(addresses, frame_size, pidx, **kwargs)

Parse opcodes in parallel

Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

Parameters:

Name Type Description Default
addresses

the addresses to parse

required
frame_size

the size of the frame

required
pidx

the process index

required
**kwargs

additional arguments

{}

Returns:

Type Description
dict

dictionnary of parsed opcodes

Source code in mmushell/architectures/generic.py
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
def parse_opcodes_parallel(self, addresses, frame_size, pidx, **kwargs) -> dict:
    """Parse opcodes in parallel

    Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

    Args:
        addresses: the addresses to parse
        frame_size: the size of the frame
        pidx: the process index
        **kwargs: additional arguments

    Returns:
        dictionnary of parsed opcodes
    """
    # Every process sleep a random delay in order to desincronize access to disk and maximixe the throuput
    sleep(uniform(pidx, pidx + 1) // 1000)

    opcodes = {}
    mm = copy(self.machine.memory)
    mm.reopen()

    # Cicle over every frame
    total_elems, iterator = addresses
    for frame_addr in tqdm(
        iterator, position=-pidx, total=total_elems, leave=False
    ):
        frame_buf = mm.get_data(
            frame_addr, frame_size
        )  # We parse memory in PAGE_SIZE chunks

        for idx, opcode in enumerate(
            iter_unpack(self.processor_features["opcode_unpack_fmt"], frame_buf)
        ):
            opcode = opcode[0]
            opcodes.update(
                self.parse_opcode(
                    opcode, frame_addr, idx * self.processor_features["instr_len"]
                )
            )

    return opcodes

CPUReg

Represents a CPU register

Source code in mmushell/architectures/generic.py
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class CPUReg:
    """Represents a CPU register"""

    def is_valid(self, value) -> bool:
        """Check if the value is valid for the register

        Being a valid register is very specific to the architecture, so this function is aimed to be overloaded by child classes

        Args:
            value: the value to check

        Returns:
            True if the value is valid, False otherwise
        """
        return True

    def is_mmu_equivalent_to(self, other_reg):
        """Check if the register is equivalent to another register

        Args:
            other_reg: the other register to compare

        See child classes for more details
        """
        raise NotImplementedError

    def __hash__(self):
        """Hash of the contained value from register"""
        return hash(self.value)

    def __eq__(self, other):
        return self.value == other.value

__hash__()

Hash of the contained value from register

Source code in mmushell/architectures/generic.py
78
79
80
def __hash__(self):
    """Hash of the contained value from register"""
    return hash(self.value)

is_mmu_equivalent_to(other_reg)

Check if the register is equivalent to another register

Parameters:

Name Type Description Default
other_reg

the other register to compare

required

See child classes for more details

Source code in mmushell/architectures/generic.py
68
69
70
71
72
73
74
75
76
def is_mmu_equivalent_to(self, other_reg):
    """Check if the register is equivalent to another register

    Args:
        other_reg: the other register to compare

    See child classes for more details
    """
    raise NotImplementedError

is_valid(value)

Check if the value is valid for the register

Being a valid register is very specific to the architecture, so this function is aimed to be overloaded by child classes

Parameters:

Name Type Description Default
value

the value to check

required

Returns:

Type Description
bool

True if the value is valid, False otherwise

Source code in mmushell/architectures/generic.py
55
56
57
58
59
60
61
62
63
64
65
66
def is_valid(self, value) -> bool:
    """Check if the value is valid for the register

    Being a valid register is very specific to the architecture, so this function is aimed to be overloaded by child classes

    Args:
        value: the value to check

    Returns:
        True if the value is valid, False otherwise
    """
    return True

MMU

Represents a generic MMU

The MMU is the hardware device that converts the virtual addresses used by the processor to physical addresses. To accomplish this task, the MMU needs to be configured by using special system registers, while in-memory structures that maintain the virtual-to-physical mapping have to be defined and continuously updated by the operating system. When the MMU fails to resolve a requested virtual address, it raises an interrupt to signal the OS to update the in-memory related structures. It is important to note that the MMU demands strict conformity of the shape and topology of the in-memory structure to the ISA and MMU configuration requirements. Otherwise, it raises an exception and aborts the address translation. The translation process can involve up to two separate translations, both accomplished by the MMU: segmentation, which converts virtual to segmented addresses, and paging, which converts segmented addresses to physical ones. Some architectures use either one or the other, while others use both. In general, when the system boots, the MMU is virtually disabled and all the virtual addresses are identically transformed to physical ones. This allows the OS to start in a simplified memory environment and gives it time to properly configure and enable the MMU before spawning other processes. Since address translation is a performance bottleneck, the latest translated addresses are cached in a few but low- latency hardware structures called Translation Lookaside Buffers (TLBs). Before starting a translation, the MMU checks if TLBs contain an already resolved virtual address and, if so, it returns directly the corresponding physical addresses.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
mmu_config

the configuration of the MMU

PAGE_SIZE

the size of the page

extract_bits

the function to extract bits

paging_unpack_format

the format of the paging

page_table_class

the class of the page table

radix_levels

the levels of the radix tree

top_prefix

the top prefix of the radix tree

entries_size

the size of the entries

map_ptr_entries_to_levels

the mapping between pointer entries and levels

map_datapages_entries_to_levels

the mapping between data pages entries and levels

map_level_to_table_size

the mapping between levels and table sizes

map_entries_to_shifts

the mapping between entries and shifts

map_reserved_entries_to_levels

the mapping between reserved entries and levels

machine

the machine of the MMU

Source code in mmushell/architectures/generic.py
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
class MMU:
    """Represents a generic MMU

    The MMU is the hardware device that converts the virtual addresses used by the processor to physical addresses.
    To accomplish this task, the MMU needs to be configured by using special system registers, while in-memory
    structures that maintain the virtual-to-physical mapping have to be defined and continuously updated by the
    operating system.
    When the MMU fails to resolve a requested virtual address, it raises an interrupt to signal the OS to update
    the in-memory related structures.
    It is important to note that the MMU demands strict conformity of the shape and topology of the in-memory structure
    to the ISA and MMU configuration requirements. Otherwise, it raises an exception and aborts the address translation.
    The translation process can involve up to two separate translations, both accomplished by the MMU: segmentation,
    which converts virtual to segmented addresses, and paging, which converts segmented addresses to physical ones.
    Some architectures use either one or the other, while others use both.
    In general, when the system boots, the MMU is virtually disabled and all the virtual addresses are identically
    transformed to physical ones. This allows the OS to start in a simplified memory environment and gives it time to
    properly configure and enable the MMU before spawning other processes.
    Since address translation is a performance bottleneck, the latest translated addresses are cached in a few but low-
    latency hardware structures called Translation Lookaside Buffers (TLBs). Before starting a translation, the MMU checks
    if TLBs contain an already resolved virtual address and, if so, it returns directly the corresponding physical addresses.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        mmu_config: the configuration of the MMU
        PAGE_SIZE: the size of the page
        extract_bits: the function to extract bits
        paging_unpack_format: the format of the paging
        page_table_class: the class of the page table
        radix_levels: the levels of the radix tree
        top_prefix: the top prefix of the radix tree
        entries_size: the size of the entries
        map_ptr_entries_to_levels: the mapping between pointer entries and levels
        map_datapages_entries_to_levels: the mapping between data pages entries and levels
        map_level_to_table_size: the mapping between levels and table sizes
        map_entries_to_shifts: the mapping between entries and shifts
        map_reserved_entries_to_levels: the mapping between reserved entries and levels
        machine: the machine of the MMU
    """

    machine = None

    def __init__(self, mmu_config):
        """Initialize the MMU

        Args:
            mmu_config: the configuration of the MMU
        """
        self.mmu_config = mmu_config

    @staticmethod
    def extract_bits_little(entry, pos, n):
        """Extract bits from an entry in little endian

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> pos) & ((1 << n) - 1)

    @staticmethod
    def extract_bits_big(entry, pos, n):
        """Extract bits from an entry in big endian

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> (32 - pos - n)) & ((1 << n) - 1)

    @staticmethod
    def extract_bits_big64(entry, pos, n):
        """Extract bits from an entry in big endian 64 bits

        Args:
            entry: the entry to extract bits from
            pos: the position of the bits
            n: the number of bits to extract

        Returns:
            the extracted bits
        """
        return (entry >> (64 - pos - n)) & ((1 << n) - 1)

__init__(mmu_config)

Initialize the MMU

Parameters:

Name Type Description Default
mmu_config

the configuration of the MMU

required
Source code in mmushell/architectures/generic.py
897
898
899
900
901
902
903
def __init__(self, mmu_config):
    """Initialize the MMU

    Args:
        mmu_config: the configuration of the MMU
    """
    self.mmu_config = mmu_config

extract_bits_big(entry, pos, n) staticmethod

Extract bits from an entry in big endian

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
919
920
921
922
923
924
925
926
927
928
929
930
931
@staticmethod
def extract_bits_big(entry, pos, n):
    """Extract bits from an entry in big endian

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> (32 - pos - n)) & ((1 << n) - 1)

extract_bits_big64(entry, pos, n) staticmethod

Extract bits from an entry in big endian 64 bits

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
933
934
935
936
937
938
939
940
941
942
943
944
945
@staticmethod
def extract_bits_big64(entry, pos, n):
    """Extract bits from an entry in big endian 64 bits

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> (64 - pos - n)) & ((1 << n) - 1)

extract_bits_little(entry, pos, n) staticmethod

Extract bits from an entry in little endian

Parameters:

Name Type Description Default
entry

the entry to extract bits from

required
pos

the position of the bits

required
n

the number of bits to extract

required

Returns:

Type Description

the extracted bits

Source code in mmushell/architectures/generic.py
905
906
907
908
909
910
911
912
913
914
915
916
917
@staticmethod
def extract_bits_little(entry, pos, n):
    """Extract bits from an entry in little endian

    Args:
        entry: the entry to extract bits from
        pos: the position of the bits
        n: the number of bits to extract

    Returns:
        the extracted bits
    """
    return (entry >> pos) & ((1 << n) - 1)

MMURadix

Bases: MMU

Represents a MMU that uses a Radix Tree

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
PAGE_SIZE

the size of the page

extract_bits

the function to extract bits

paging_unpack_format

the format of the paging

page_table_class

the class of the page table

radix_levels

the levels of the radix tree

top_prefix

the top prefix of the radix tree

entries_size

the size of the entries

map_ptr_entries_to_levels

the mapping between pointer entries and levels

map_datapages_entries_to_levels

the mapping between data pages entries and levels

map_level_to_table_size

the mapping between levels and table sizes

map_entries_to_shifts

the mapping between entries and shifts

map_reserved_entries_to_levels

the mapping between reserved entries and levels

Source code in mmushell/architectures/generic.py
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
class MMURadix(MMU):
    """Represents a MMU that uses a Radix Tree

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        PAGE_SIZE: the size of the page
        extract_bits: the function to extract bits
        paging_unpack_format: the format of the paging
        page_table_class: the class of the page table
        radix_levels: the levels of the radix tree
        top_prefix: the top prefix of the radix tree
        entries_size: the size of the entries
        map_ptr_entries_to_levels: the mapping between pointer entries and levels
        map_datapages_entries_to_levels: the mapping between data pages entries and levels
        map_level_to_table_size: the mapping between levels and table sizes
        map_entries_to_shifts: the mapping between entries and shifts
        map_reserved_entries_to_levels: the mapping between reserved entries and levels
    """

    PAGE_SIZE = 0
    extract_bits = None
    paging_unpack_format = ""
    page_table_class = PageTable
    radix_levels = {}
    top_prefix = 0
    entries_size = 0
    map_ptr_entries_to_levels = {}
    map_datapages_entries_to_levels = {}
    map_level_to_table_size = {}
    map_entries_to_shifts = {}
    map_reserved_entries_to_levels = {}

    def classify_entry(self, page_addr, entry):
        """Classify an entry

        Aimed to be overloaded by child classes

        Args:
            page_addr: the address of the page
            entry: the entry to classify

        Returns:
            the classified entry
        """
        raise NotImplementedError

    def derive_page_address(self, addr, mode="global"):
        """Derive the addresses of pages containing the address

        Args:
            addr: the address to derive
            mode: the mode to use

        Returns:
            the addresses of pages containing the address
        """
        addrs = []
        for lvl in range(self.radix_levels[mode] - 1, -1, -1):
            for entry_class in self.map_datapages_entries_to_levels[mode][lvl]:
                if entry_class is not None:
                    shift = self.map_entries_to_shifts[mode][entry_class]
                    addrs.append((lvl, (addr >> shift) << shift))
        return addrs

    def parse_parallel_frame(
        self, addresses, frame_size, pidx, mode="global", **kwargs
    ) -> tuple:
        """Parse a frame in parallel

        Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

        Args:
            addresses: the addresses to parse
            frame_size: the size of the frame
            pidx: the process index
            mode: the mode to use
            **kwargs: additional arguments

        Returns:
            a tuple containing page tables, data pages and empty tables
        """
        # Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput
        sleep(uniform(pidx, pidx + 1) // 1000)

        data_pages = []
        empty_tables = []
        page_tables = [{} for i in range(self.radix_levels[mode])]
        mm = copy(self.machine.memory)
        mm.reopen()

        # Cicle over every frame
        total_elems, iterator = addresses
        for frame_addr in tqdm(
            iterator, position=-pidx, total=total_elems, leave=False
        ):
            frame_buf = mm.get_data(frame_addr, frame_size)
            invalids, pt_classes, table_obj = self.parse_frame(
                frame_buf, frame_addr, frame_size
            )

            # It is a data page
            if invalids or -2 in pt_classes:
                data_pages.append(frame_addr)
            elif -1 in pt_classes:
                empty_tables.append(frame_addr)
            else:
                for pt_class in pt_classes:
                    page_tables[pt_class][frame_addr] = table_obj

        return page_tables, data_pages, empty_tables

    def parse_frame(
        self, frame_buf, frame_addr, frame_size, frame_level=-1, mode="global"
    ) -> tuple:
        """Parse a frame

        Args:
            frame_buf: the buffer of the frame
            frame_addr: the address of the frame
            frame_size: the size of the frame
            frame_level: the level of the frame
            mode: the mode to use

        Returns:
            a tuple containing the number of invalids, the classes of the page tables and page table object
        """
        frame_d = defaultdict(dict)
        if frame_level >= 0:
            reseved_classes = self.machine.mmu.map_reserved_entries_to_levels[mode][
                frame_level
            ]
            data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][
                frame_level
            ]
            ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][frame_level]
            # frame_size = self.machine.mmu.map_level_to_table_size[mode][frame_level]

        invalids = 0
        empty_entries = 0
        # Unpack records inside the frame
        for entry_idx, entry in enumerate(
            iter_unpack(self.paging_unpack_format, frame_buf)
        ):
            if (
                frame_level >= 0
                and entry_idx * self.machine.mmu.entries_size >= frame_size
            ):
                break

            entry = entry[0]
            # Classify the entry
            entry_classes = self.classify_entry(frame_addr, entry)
            # It's a data page
            if entry_classes[0] is None:
                if frame_level >= 0:
                    invalids += 1
                    continue
                else:
                    break

            # It's an empty page (data page or page table)
            if entry_classes[0] is False:
                empty_entries += 1
                continue

            # Add all records if scanning the memory or only the record of a particular level if it is creating a table to be print
            if frame_level < 0:
                for entry_obj in entry_classes:
                    entry_type = type(entry_obj)
                    frame_d[entry_type][entry_idx] = entry_obj
            else:
                for entry_obj in entry_classes:
                    entry_type = type(entry_obj)
                    if (
                        type(entry_obj) in data_classes
                        or type(entry_obj) is ptr_class
                        or type(entry_obj) in reseved_classes
                    ):
                        frame_d[entry_type][entry_idx] = entry_obj
                        break
                else:
                    invalids += 1

        # Classify the frame
        pt_classes = self.classify_frame(
            frame_d,
            empty_entries,
            int(frame_size // self.page_table_class.entry_size),
            mode=mode,
        )

        if -1 in pt_classes or -2 in pt_classes:  # EMPTY or DATA
            table_obj = None
        else:
            table_obj = self.page_table_class(
                frame_addr, frame_size, frame_d, pt_classes
            )
        return invalids, pt_classes, table_obj

    def classify_frame(
        self,
        frame_d,
        empty_c,
        entries_per_frame,
        mode="global",
    ) -> list:
        """Classify a frame

        Args:
            frame_d: the buffer of the frame
            empty_c: the number of empty entries
            entries_per_frame: the number of entries per frame
            mode: the mode to use

        Returns:
            a list containing the classes of the page tables
        """
        if empty_c == entries_per_frame:
            return [-1]  # EMPTY

        # For each level check if a table is a valid candidate
        frame_classes = []
        for level in range(self.radix_levels[mode]):
            entries = empty_c
            if self.map_ptr_entries_to_levels[mode][level] is not None:
                entries += len(frame_d[self.map_ptr_entries_to_levels[mode][level]])
            for data_class in self.map_datapages_entries_to_levels[mode][level]:
                if data_class is not None:
                    entries += len(frame_d[data_class])
            for reserved_class in self.map_reserved_entries_to_levels[mode][level]:
                entries += len(frame_d[reserved_class])
            if entries == entries_per_frame:
                frame_classes.append(level)

        if not frame_classes:
            return [-2]  # DATA
        else:
            return frame_classes

classify_entry(page_addr, entry)

Classify an entry

Aimed to be overloaded by child classes

Parameters:

Name Type Description Default
page_addr

the address of the page

required
entry

the entry to classify

required

Returns:

Type Description

the classified entry

Source code in mmushell/architectures/generic.py
981
982
983
984
985
986
987
988
989
990
991
992
993
def classify_entry(self, page_addr, entry):
    """Classify an entry

    Aimed to be overloaded by child classes

    Args:
        page_addr: the address of the page
        entry: the entry to classify

    Returns:
        the classified entry
    """
    raise NotImplementedError

classify_frame(frame_d, empty_c, entries_per_frame, mode='global')

Classify a frame

Parameters:

Name Type Description Default
frame_d

the buffer of the frame

required
empty_c

the number of empty entries

required
entries_per_frame

the number of entries per frame

required
mode

the mode to use

'global'

Returns:

Type Description
list

a list containing the classes of the page tables

Source code in mmushell/architectures/generic.py
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
def classify_frame(
    self,
    frame_d,
    empty_c,
    entries_per_frame,
    mode="global",
) -> list:
    """Classify a frame

    Args:
        frame_d: the buffer of the frame
        empty_c: the number of empty entries
        entries_per_frame: the number of entries per frame
        mode: the mode to use

    Returns:
        a list containing the classes of the page tables
    """
    if empty_c == entries_per_frame:
        return [-1]  # EMPTY

    # For each level check if a table is a valid candidate
    frame_classes = []
    for level in range(self.radix_levels[mode]):
        entries = empty_c
        if self.map_ptr_entries_to_levels[mode][level] is not None:
            entries += len(frame_d[self.map_ptr_entries_to_levels[mode][level]])
        for data_class in self.map_datapages_entries_to_levels[mode][level]:
            if data_class is not None:
                entries += len(frame_d[data_class])
        for reserved_class in self.map_reserved_entries_to_levels[mode][level]:
            entries += len(frame_d[reserved_class])
        if entries == entries_per_frame:
            frame_classes.append(level)

    if not frame_classes:
        return [-2]  # DATA
    else:
        return frame_classes

derive_page_address(addr, mode='global')

Derive the addresses of pages containing the address

Parameters:

Name Type Description Default
addr

the address to derive

required
mode

the mode to use

'global'

Returns:

Type Description

the addresses of pages containing the address

Source code in mmushell/architectures/generic.py
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
def derive_page_address(self, addr, mode="global"):
    """Derive the addresses of pages containing the address

    Args:
        addr: the address to derive
        mode: the mode to use

    Returns:
        the addresses of pages containing the address
    """
    addrs = []
    for lvl in range(self.radix_levels[mode] - 1, -1, -1):
        for entry_class in self.map_datapages_entries_to_levels[mode][lvl]:
            if entry_class is not None:
                shift = self.map_entries_to_shifts[mode][entry_class]
                addrs.append((lvl, (addr >> shift) << shift))
    return addrs

parse_frame(frame_buf, frame_addr, frame_size, frame_level=-1, mode='global')

Parse a frame

Parameters:

Name Type Description Default
frame_buf

the buffer of the frame

required
frame_addr

the address of the frame

required
frame_size

the size of the frame

required
frame_level

the level of the frame

-1
mode

the mode to use

'global'

Returns:

Type Description
tuple

a tuple containing the number of invalids, the classes of the page tables and page table object

Source code in mmushell/architectures/generic.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
def parse_frame(
    self, frame_buf, frame_addr, frame_size, frame_level=-1, mode="global"
) -> tuple:
    """Parse a frame

    Args:
        frame_buf: the buffer of the frame
        frame_addr: the address of the frame
        frame_size: the size of the frame
        frame_level: the level of the frame
        mode: the mode to use

    Returns:
        a tuple containing the number of invalids, the classes of the page tables and page table object
    """
    frame_d = defaultdict(dict)
    if frame_level >= 0:
        reseved_classes = self.machine.mmu.map_reserved_entries_to_levels[mode][
            frame_level
        ]
        data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][
            frame_level
        ]
        ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][frame_level]
        # frame_size = self.machine.mmu.map_level_to_table_size[mode][frame_level]

    invalids = 0
    empty_entries = 0
    # Unpack records inside the frame
    for entry_idx, entry in enumerate(
        iter_unpack(self.paging_unpack_format, frame_buf)
    ):
        if (
            frame_level >= 0
            and entry_idx * self.machine.mmu.entries_size >= frame_size
        ):
            break

        entry = entry[0]
        # Classify the entry
        entry_classes = self.classify_entry(frame_addr, entry)
        # It's a data page
        if entry_classes[0] is None:
            if frame_level >= 0:
                invalids += 1
                continue
            else:
                break

        # It's an empty page (data page or page table)
        if entry_classes[0] is False:
            empty_entries += 1
            continue

        # Add all records if scanning the memory or only the record of a particular level if it is creating a table to be print
        if frame_level < 0:
            for entry_obj in entry_classes:
                entry_type = type(entry_obj)
                frame_d[entry_type][entry_idx] = entry_obj
        else:
            for entry_obj in entry_classes:
                entry_type = type(entry_obj)
                if (
                    type(entry_obj) in data_classes
                    or type(entry_obj) is ptr_class
                    or type(entry_obj) in reseved_classes
                ):
                    frame_d[entry_type][entry_idx] = entry_obj
                    break
            else:
                invalids += 1

    # Classify the frame
    pt_classes = self.classify_frame(
        frame_d,
        empty_entries,
        int(frame_size // self.page_table_class.entry_size),
        mode=mode,
    )

    if -1 in pt_classes or -2 in pt_classes:  # EMPTY or DATA
        table_obj = None
    else:
        table_obj = self.page_table_class(
            frame_addr, frame_size, frame_d, pt_classes
        )
    return invalids, pt_classes, table_obj

parse_parallel_frame(addresses, frame_size, pidx, mode='global', **kwargs)

Parse a frame in parallel

Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

Parameters:

Name Type Description Default
addresses

the addresses to parse

required
frame_size

the size of the frame

required
pidx

the process index

required
mode

the mode to use

'global'
**kwargs

additional arguments

{}

Returns:

Type Description
tuple

a tuple containing page tables, data pages and empty tables

Source code in mmushell/architectures/generic.py
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
def parse_parallel_frame(
    self, addresses, frame_size, pidx, mode="global", **kwargs
) -> tuple:
    """Parse a frame in parallel

    Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput

    Args:
        addresses: the addresses to parse
        frame_size: the size of the frame
        pidx: the process index
        mode: the mode to use
        **kwargs: additional arguments

    Returns:
        a tuple containing page tables, data pages and empty tables
    """
    # Every process sleep a random delay in order to desynchronise access to disk and maximixe the throuput
    sleep(uniform(pidx, pidx + 1) // 1000)

    data_pages = []
    empty_tables = []
    page_tables = [{} for i in range(self.radix_levels[mode])]
    mm = copy(self.machine.memory)
    mm.reopen()

    # Cicle over every frame
    total_elems, iterator = addresses
    for frame_addr in tqdm(
        iterator, position=-pidx, total=total_elems, leave=False
    ):
        frame_buf = mm.get_data(frame_addr, frame_size)
        invalids, pt_classes, table_obj = self.parse_frame(
            frame_buf, frame_addr, frame_size
        )

        # It is a data page
        if invalids or -2 in pt_classes:
            data_pages.append(frame_addr)
        elif -1 in pt_classes:
            empty_tables.append(frame_addr)
        else:
            for pt_class in pt_classes:
                page_tables[pt_class][frame_addr] = table_obj

    return page_tables, data_pages, empty_tables

MMUShell

Bases: Cmd

Source code in mmushell/architectures/generic.py
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
class MMUShell(Cmd):
    intro = "MMUShell.   Type help or ? to list commands.\n"

    def __init__(self, completekey="tab", stdin=None, stdout=None, machine={}):
        super(MMUShell, self).__init__(completekey, stdin, stdout)
        self.machine = machine
        self.prompt = "[MMUShell " + self.machine.cpu.architecture + "]# "
        self.data = {}
        self.gtruth = {}

    def reload_data_from_file(self, data_filename):
        # Load a previous session
        logger.info("Loading previous session data...")
        try:
            self.data = load(data_filename, compression="lzma")
        except Exception as e:
            logger.fatal("Fatal error loading session data! Error:{}".format(e))
            import traceback

            print(traceback.print_exc())
            exit(1)

    def load_gtruth(self, gtruth_fd):
        try:
            self.gtruth = Load(gtruth_fd)
            gtruth_fd.close()
        except Exception as e:
            logger.fatal("Fatal error loading ground truth file! Error:{}".format(e))
            exit(1)

    def do_exit(self, arg):
        """Exit :)"""
        logger.info("Bye! :)")
        return True

    def do_save_data(self, arg):
        """Save data in a compressed pickle file"""

        if not len(arg):
            logger.info("Use: save_data FILENAME")
            return

        try:
            logger.info("Saving data...")
            dump(self.data, arg, compression="lzma")
        except Exception as e:
            logger.error("Error in session data. Error: {}".format(e))
            return

    # def do_show_machine_config(self, arg):
    #     """Show the machine configuration"""
    #     pprint(self.machine_config)

    def do_ipython(self, arg):
        """Open an IPython shell"""
        embed()

    def emptyline(self):
        pass

    def parse_int(self, value):
        if any([c not in "0123456789abcdefxABCDEFX" for c in value]):
            raise ValueError
        if value[:2].lower() == "0x":
            return int(value, 16)
        else:
            return int(value, 10)

    def radix_roots_from_data_page(
        self, pg_lvl, pg_addr, rev_map_pages, rev_map_tables
    ):
        # For a page address pointed by tables of level 'level' find all the radix root of trees containing it

        level_tables = set()
        prev_level_tables = set()

        # Collect all table at level 'pg_lvl' which point to that page
        level_tables.update(rev_map_pages[pg_lvl][pg_addr])
        logger.debug(
            "radix_roots_from_data_pages: level_tables found {} for pg_addr {}".format(
                len(level_tables), hex(pg_addr)
            )
        )

        # Raise the tree in order to find the top table
        for tree_lvl in range(pg_lvl - 1, -1, -1):
            for table_addr in level_tables:
                prev_level_tables.update(rev_map_tables[tree_lvl][table_addr])

            level_tables = prev_level_tables
            prev_level_tables = set()
            logger.debug(
                "radix_roots_from_data_pages: level_tables found {} for pg_addr {}".format(
                    len(level_tables), hex(pg_addr)
                )
            )

        return set(level_tables)

    def physpace(
        self,
        addr,
        page_tables,
        empty_tables,
        lvl=0,
        uperms=(True,) * 6,
        hierarchical=False,
        mode="global",
        cache=defaultdict(dict),
    ):
        """Recursively evaluate the consistency and return the kernel/user physical space addressed"""
        pas = PAS()
        data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][lvl]
        logging.debug(f"physpace() radix: {hex(addr)} Lvl: {lvl} Table: {hex(addr)}")

        # Leaf level
        if lvl == self.machine.mmu.radix_levels[mode] - 1:
            for data_class in data_classes:
                for entry in page_tables[lvl][addr].entries[data_class].values():
                    perms = entry.get_permissions()
                    pas.space[perms][entry.address] = entry.size
                    pas.space_size[perms] += entry.size

            cache[lvl][addr] = (True, pas)
            return True, pas

        else:  # Superior levels
            ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][lvl]
            if ptr_class in page_tables[lvl][addr].entries:
                for entry in page_tables[lvl][addr].entries[ptr_class].values():
                    if entry.address not in page_tables[lvl + 1]:
                        if (
                            entry.address not in empty_tables
                        ):  # It is not an empty table!
                            logging.debug(
                                f"physpace() radix: {hex(addr)} parent level: {lvl} table: {hex(entry.address)} invalid"
                            )
                            cache[lvl][addr] = (False, None)
                            return False, None
                    else:
                        if entry.address not in cache[lvl + 1]:
                            low_cons, low_pas = self.physpace(
                                entry.address,
                                page_tables,
                                empty_tables,
                                lvl + 1,
                                uperms=uperms,
                                hierarchical=hierarchical,
                                mode=mode,
                                cache=cache,
                            )
                        else:
                            low_cons, low_pas = cache[lvl + 1][entry.address]

                        if not low_cons:
                            logging.debug(
                                f"physpace() radix: {hex(addr)} parent level: {lvl} table: {hex(entry.address)} invalid"
                            )
                            cache[lvl][addr] = (False, None)
                            return False, None

                        if hierarchical:
                            pas.hierarchical_extend(low_pas, uperms)
                        else:
                            pas.hierarchical_extend(low_pas, (True,) * 6)

            for data_class in data_classes:
                if (
                    data_class in page_tables[lvl][addr].entries
                    and data_class is not None
                ):
                    for entry in page_tables[lvl][addr].entries[data_class].values():
                        perms = entry.get_permissions()
                        pas.space[perms][entry.address] = entry.size
                        pas.space_size[perms] += entry.size

            cache[lvl][addr] = (True, pas)
            return True, pas

    def resolve_vaddr(self, cr3, vaddr, mode="global"):
        # Return the paddr or -1

        # Split in possible table resolution paths
        for splitted_addr in self.machine.mmu.split_vaddr(vaddr):
            current_table_addr = cr3
            requested_steps = len(splitted_addr) - 1
            resolution_steps = 0

            for level_idx, idx_t in enumerate(splitted_addr[:-1]):
                level_class, entry_idx = idx_t
                # Missing valid table, no valid resolution path
                if current_table_addr not in self.data.page_tables["global"][level_idx]:
                    logging.debug(
                        f"resolve_vaddr() Missing table {hex(current_table_addr)}"
                    )
                    logging.debug("resolve_vaddr() RESOLUTION PATH FAILED! ########")
                    break

                logging.debug(
                    f"resolve_vaddr(): Resolution path Lvl: {level_class} Table: {hex(current_table_addr)} Entry addr: {hex( current_table_addr + self.machine.mmu.page_table_class.entry_size * entry_idx)}"
                )
                # Find valid entry in table
                if (
                    entry_idx
                    in self.data.page_tables["global"][level_idx][
                        current_table_addr
                    ].entries[level_class]
                ):
                    current_table_addr = (
                        self.data.page_tables["global"][level_idx][current_table_addr]
                        .entries[level_class][entry_idx]
                        .address
                    )

                    resolution_steps += 1

                    # Each resolution path involves different number of steps (table to walk)
                    if resolution_steps == requested_steps:
                        return current_table_addr + splitted_addr[-1][1]
                    else:
                        continue
                else:
                    logging.debug("resolve_vaddr() RESOLUTION PATH FAILED! ########")
                    break
        else:
            return -1

    def virtspace(
        self,
        addr,
        lvl=0,
        prefix=0,
        uperms=(True,) * 6,
        hierarchical=False,
        mode="global",
        cache=defaultdict(dict),
    ):
        """Recursively reconstruct virtual address space"""

        virtspace = VAS()
        data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][lvl]
        ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][lvl]
        cache[lvl][addr] = defaultdict(portion.empty)

        if lvl == self.machine.mmu.radix_levels[mode] - 1:
            for data_class in data_classes:
                shift = self.machine.mmu.map_entries_to_shifts[mode][data_class]
                for entry_idx, entry in (
                    self.data.page_tables[mode][lvl][addr].entries[data_class].items()
                ):
                    permissions = entry.get_permissions()
                    virt_addr = prefix | (entry_idx << shift)
                    virtspace[permissions] |= portion.closedopen(
                        virt_addr, virt_addr + entry.size
                    )

            cache[lvl][addr] = virtspace
            return virtspace

        else:
            if ptr_class in self.data.page_tables[mode][lvl][addr].entries:
                shift = self.machine.mmu.map_entries_to_shifts[mode][ptr_class]
                for entry_idx, entry in (
                    self.data.page_tables[mode][lvl][addr].entries[ptr_class].items()
                ):
                    if entry.address not in self.data.page_tables[mode][lvl + 1]:
                        continue
                    else:
                        permissions = entry.get_permissions()

                        if entry.address not in cache[lvl + 1]:
                            virt_addr = prefix | (entry_idx << shift)
                            low_virts = self.virtspace(
                                entry.address,
                                lvl + 1,
                                virt_addr,
                                permissions,
                                hierarchical=hierarchical,
                                mode=mode,
                                cache=cache,
                            )
                        else:
                            low_virts = cache[lvl + 1][entry.address]

                        if hierarchical:
                            virtspace.hierarchical_extend(low_virts, uperms)
                        else:
                            virtspace.hierarchical_extend(low_virts, (True,) * 6)

            for data_class in data_classes:
                if (
                    data_class in self.data.page_tables[mode][lvl][addr].entries
                    and data_class is not None
                ):
                    shift = self.machine.mmu.map_entries_to_shifts[mode][data_class]
                    for entry_idx, entry in (
                        self.data.page_tables[mode][lvl][addr]
                        .entries[data_class]
                        .items()
                    ):
                        permissions = entry.get_permissions()
                        virt_addr = prefix | (entry_idx << shift)
                        virtspace[permissions] |= portion.closedopen(
                            virt_addr, virt_addr + entry.size
                        )

            cache[lvl][addr] = virtspace
            return virtspace

do_exit(arg)

Exit :)

Source code in mmushell/architectures/generic.py
1488
1489
1490
1491
def do_exit(self, arg):
    """Exit :)"""
    logger.info("Bye! :)")
    return True

do_ipython(arg)

Open an IPython shell

Source code in mmushell/architectures/generic.py
1511
1512
1513
def do_ipython(self, arg):
    """Open an IPython shell"""
    embed()

do_save_data(arg)

Save data in a compressed pickle file

Source code in mmushell/architectures/generic.py
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
def do_save_data(self, arg):
    """Save data in a compressed pickle file"""

    if not len(arg):
        logger.info("Use: save_data FILENAME")
        return

    try:
        logger.info("Saving data...")
        dump(self.data, arg, compression="lzma")
    except Exception as e:
        logger.error("Error in session data. Error: {}".format(e))
        return

physpace(addr, page_tables, empty_tables, lvl=0, uperms=(True) * 6, hierarchical=False, mode='global', cache=defaultdict(dict))

Recursively evaluate the consistency and return the kernel/user physical space addressed

Source code in mmushell/architectures/generic.py
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
def physpace(
    self,
    addr,
    page_tables,
    empty_tables,
    lvl=0,
    uperms=(True,) * 6,
    hierarchical=False,
    mode="global",
    cache=defaultdict(dict),
):
    """Recursively evaluate the consistency and return the kernel/user physical space addressed"""
    pas = PAS()
    data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][lvl]
    logging.debug(f"physpace() radix: {hex(addr)} Lvl: {lvl} Table: {hex(addr)}")

    # Leaf level
    if lvl == self.machine.mmu.radix_levels[mode] - 1:
        for data_class in data_classes:
            for entry in page_tables[lvl][addr].entries[data_class].values():
                perms = entry.get_permissions()
                pas.space[perms][entry.address] = entry.size
                pas.space_size[perms] += entry.size

        cache[lvl][addr] = (True, pas)
        return True, pas

    else:  # Superior levels
        ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][lvl]
        if ptr_class in page_tables[lvl][addr].entries:
            for entry in page_tables[lvl][addr].entries[ptr_class].values():
                if entry.address not in page_tables[lvl + 1]:
                    if (
                        entry.address not in empty_tables
                    ):  # It is not an empty table!
                        logging.debug(
                            f"physpace() radix: {hex(addr)} parent level: {lvl} table: {hex(entry.address)} invalid"
                        )
                        cache[lvl][addr] = (False, None)
                        return False, None
                else:
                    if entry.address not in cache[lvl + 1]:
                        low_cons, low_pas = self.physpace(
                            entry.address,
                            page_tables,
                            empty_tables,
                            lvl + 1,
                            uperms=uperms,
                            hierarchical=hierarchical,
                            mode=mode,
                            cache=cache,
                        )
                    else:
                        low_cons, low_pas = cache[lvl + 1][entry.address]

                    if not low_cons:
                        logging.debug(
                            f"physpace() radix: {hex(addr)} parent level: {lvl} table: {hex(entry.address)} invalid"
                        )
                        cache[lvl][addr] = (False, None)
                        return False, None

                    if hierarchical:
                        pas.hierarchical_extend(low_pas, uperms)
                    else:
                        pas.hierarchical_extend(low_pas, (True,) * 6)

        for data_class in data_classes:
            if (
                data_class in page_tables[lvl][addr].entries
                and data_class is not None
            ):
                for entry in page_tables[lvl][addr].entries[data_class].values():
                    perms = entry.get_permissions()
                    pas.space[perms][entry.address] = entry.size
                    pas.space_size[perms] += entry.size

        cache[lvl][addr] = (True, pas)
        return True, pas

virtspace(addr, lvl=0, prefix=0, uperms=(True) * 6, hierarchical=False, mode='global', cache=defaultdict(dict))

Recursively reconstruct virtual address space

Source code in mmushell/architectures/generic.py
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
def virtspace(
    self,
    addr,
    lvl=0,
    prefix=0,
    uperms=(True,) * 6,
    hierarchical=False,
    mode="global",
    cache=defaultdict(dict),
):
    """Recursively reconstruct virtual address space"""

    virtspace = VAS()
    data_classes = self.machine.mmu.map_datapages_entries_to_levels[mode][lvl]
    ptr_class = self.machine.mmu.map_ptr_entries_to_levels[mode][lvl]
    cache[lvl][addr] = defaultdict(portion.empty)

    if lvl == self.machine.mmu.radix_levels[mode] - 1:
        for data_class in data_classes:
            shift = self.machine.mmu.map_entries_to_shifts[mode][data_class]
            for entry_idx, entry in (
                self.data.page_tables[mode][lvl][addr].entries[data_class].items()
            ):
                permissions = entry.get_permissions()
                virt_addr = prefix | (entry_idx << shift)
                virtspace[permissions] |= portion.closedopen(
                    virt_addr, virt_addr + entry.size
                )

        cache[lvl][addr] = virtspace
        return virtspace

    else:
        if ptr_class in self.data.page_tables[mode][lvl][addr].entries:
            shift = self.machine.mmu.map_entries_to_shifts[mode][ptr_class]
            for entry_idx, entry in (
                self.data.page_tables[mode][lvl][addr].entries[ptr_class].items()
            ):
                if entry.address not in self.data.page_tables[mode][lvl + 1]:
                    continue
                else:
                    permissions = entry.get_permissions()

                    if entry.address not in cache[lvl + 1]:
                        virt_addr = prefix | (entry_idx << shift)
                        low_virts = self.virtspace(
                            entry.address,
                            lvl + 1,
                            virt_addr,
                            permissions,
                            hierarchical=hierarchical,
                            mode=mode,
                            cache=cache,
                        )
                    else:
                        low_virts = cache[lvl + 1][entry.address]

                    if hierarchical:
                        virtspace.hierarchical_extend(low_virts, uperms)
                    else:
                        virtspace.hierarchical_extend(low_virts, (True,) * 6)

        for data_class in data_classes:
            if (
                data_class in self.data.page_tables[mode][lvl][addr].entries
                and data_class is not None
            ):
                shift = self.machine.mmu.map_entries_to_shifts[mode][data_class]
                for entry_idx, entry in (
                    self.data.page_tables[mode][lvl][addr]
                    .entries[data_class]
                    .items()
                ):
                    permissions = entry.get_permissions()
                    virt_addr = prefix | (entry_idx << shift)
                    virtspace[permissions] |= portion.closedopen(
                        virt_addr, virt_addr + entry.size
                    )

        cache[lvl][addr] = virtspace
        return virtspace

Machine

Represents a generic machine

A machine is composed by a CPU, a MMU and a memory. It is able to parse the memory in parallel and to extract the dataflow of the registers.

Attributes:

Name Type Description
cpu

the CPU of the machine

mmu

the MMU of the machine

memory

the memory of the machine

gtruth

the ground truth of the machine

data

the data of the machine

Source code in mmushell/architectures/generic.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
class Machine:
    """Represents a generic machine

    A machine is composed by a CPU, a MMU and a memory. It is able to parse the memory in parallel and to extract the dataflow of the registers.

    Attributes:
        cpu: the CPU of the machine
        mmu: the MMU of the machine
        memory: the memory of the machine
        gtruth: the ground truth of the machine
        data: the data of the machine
    """

    @classmethod
    def from_machine_config(cls, machine_config, **kwargs):
        """Create a machine starting from a YAML file descriptor

        Args:
            machine_config: the YAML file descriptor
            **kwargs: additional arguments

        Returns:
            a new Machine object
        """
        # Check no intersection between memory regions
        ram_portion = portion.empty()
        for region_dict in machine_config["memspace"]["ram"]:
            region_portion = portion.closed(region_dict["start"], region_dict["end"])
            if not ram_portion.intersection(region_portion).empty:
                logger.fatal("RAM regions overlapping!")
                exit(1)
            ram_portion = ram_portion.union(region_portion)

        # Module to use
        architecture_module = importlib.import_module(
            "architectures." + machine_config["cpu"]["architecture"]
        )

        # Create CPU
        cpu = architecture_module.CPU.from_cpu_config(machine_config["cpu"])

        # Create MMU
        try:
            mmu_class = getattr(
                architecture_module, machine_config["mmu"]["mode"].upper()
            )
        except AttributeError:
            logger.fatal("Unknown MMU mode!")
            exit(1)
        mmu = mmu_class(machine_config["mmu"])

        # Create RAM
        memory = architecture_module.PhysicalMemory(machine_config["memspace"])

        return architecture_module.Machine(cpu, mmu, memory, **kwargs)

    def __init__(self, cpu, mmu, memory, **kwargs):
        """Initialize the Machine

        Args:
            cpu: the CPU of the machine
            mmu: the MMU of the machine
            memory: the memory of the machine
            **kwargs: additional arguments
        """
        self.cpu = cpu
        self.mmu = mmu
        self.memory = memory
        self.gtruth = {}
        self.data = None
        self.cpu.machine = self
        self.mmu.machine = self
        self.memory.machine = self

    def get_miasm_machine(self):
        """Get the Miasm machine

        Aimed to be overloaded by child classes

        Returns:
            the Miasm machine
        """
        return None

    def __del__(self):
        self.memory.close()

    def apply_parallel(
        self, frame_size, parallel_func, iterators=None, max_address=-1, **kwargs
    ) -> list:
        """Run parallel_func using multiple core to frame_size chunks of RAM or iterators arguments

        Only used in child classes for parsing memory

        Args:
            frame_size: the size of the frame to parse
            parallel_func: the function to run in parallel
            iterators: the iterators to use
            max_address: the maximum address to parse
            **kwargs: additional arguments

        Returns:
            a list of the results of parallel_func
        """

        # Prepare the pool
        logger.info("Parsing memory...")
        cpus = mp.cpu_count()
        pool = mp.Pool(cpus, initializer=tqdm.set_lock, initargs=(mp.Lock(),))

        if iterators is None:
            # Create iterators for parallel execution
            _, addresses_iterators = self.memory.get_addresses(
                frame_size, cpus=cpus, max_address=max_address
            )
        else:
            addresses_iterators = iterators

        # GO!
        parsing_results_async = [
            pool.apply_async(
                parallel_func, args=(addresses_iterator, frame_size, pidx), kwds=kwargs
            )
            for pidx, addresses_iterator in enumerate(addresses_iterators)
        ]
        pool.close()
        pool.join()

        print("\n")  # Workaround for tqdm

        return parsing_results_async

__init__(cpu, mmu, memory, **kwargs)

Initialize the Machine

Parameters:

Name Type Description Default
cpu

the CPU of the machine

required
mmu

the MMU of the machine

required
memory

the memory of the machine

required
**kwargs

additional arguments

{}
Source code in mmushell/architectures/generic.py
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def __init__(self, cpu, mmu, memory, **kwargs):
    """Initialize the Machine

    Args:
        cpu: the CPU of the machine
        mmu: the MMU of the machine
        memory: the memory of the machine
        **kwargs: additional arguments
    """
    self.cpu = cpu
    self.mmu = mmu
    self.memory = memory
    self.gtruth = {}
    self.data = None
    self.cpu.machine = self
    self.mmu.machine = self
    self.memory.machine = self

apply_parallel(frame_size, parallel_func, iterators=None, max_address=-1, **kwargs)

Run parallel_func using multiple core to frame_size chunks of RAM or iterators arguments

Only used in child classes for parsing memory

Parameters:

Name Type Description Default
frame_size

the size of the frame to parse

required
parallel_func

the function to run in parallel

required
iterators

the iterators to use

None
max_address

the maximum address to parse

-1
**kwargs

additional arguments

{}

Returns:

Type Description
list

a list of the results of parallel_func

Source code in mmushell/architectures/generic.py
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def apply_parallel(
    self, frame_size, parallel_func, iterators=None, max_address=-1, **kwargs
) -> list:
    """Run parallel_func using multiple core to frame_size chunks of RAM or iterators arguments

    Only used in child classes for parsing memory

    Args:
        frame_size: the size of the frame to parse
        parallel_func: the function to run in parallel
        iterators: the iterators to use
        max_address: the maximum address to parse
        **kwargs: additional arguments

    Returns:
        a list of the results of parallel_func
    """

    # Prepare the pool
    logger.info("Parsing memory...")
    cpus = mp.cpu_count()
    pool = mp.Pool(cpus, initializer=tqdm.set_lock, initargs=(mp.Lock(),))

    if iterators is None:
        # Create iterators for parallel execution
        _, addresses_iterators = self.memory.get_addresses(
            frame_size, cpus=cpus, max_address=max_address
        )
    else:
        addresses_iterators = iterators

    # GO!
    parsing_results_async = [
        pool.apply_async(
            parallel_func, args=(addresses_iterator, frame_size, pidx), kwds=kwargs
        )
        for pidx, addresses_iterator in enumerate(addresses_iterators)
    ]
    pool.close()
    pool.join()

    print("\n")  # Workaround for tqdm

    return parsing_results_async

from_machine_config(machine_config, **kwargs) classmethod

Create a machine starting from a YAML file descriptor

Parameters:

Name Type Description Default
machine_config

the YAML file descriptor

required
**kwargs

additional arguments

{}

Returns:

Type Description

a new Machine object

Source code in mmushell/architectures/generic.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
@classmethod
def from_machine_config(cls, machine_config, **kwargs):
    """Create a machine starting from a YAML file descriptor

    Args:
        machine_config: the YAML file descriptor
        **kwargs: additional arguments

    Returns:
        a new Machine object
    """
    # Check no intersection between memory regions
    ram_portion = portion.empty()
    for region_dict in machine_config["memspace"]["ram"]:
        region_portion = portion.closed(region_dict["start"], region_dict["end"])
        if not ram_portion.intersection(region_portion).empty:
            logger.fatal("RAM regions overlapping!")
            exit(1)
        ram_portion = ram_portion.union(region_portion)

    # Module to use
    architecture_module = importlib.import_module(
        "architectures." + machine_config["cpu"]["architecture"]
    )

    # Create CPU
    cpu = architecture_module.CPU.from_cpu_config(machine_config["cpu"])

    # Create MMU
    try:
        mmu_class = getattr(
            architecture_module, machine_config["mmu"]["mode"].upper()
        )
    except AttributeError:
        logger.fatal("Unknown MMU mode!")
        exit(1)
    mmu = mmu_class(machine_config["mmu"])

    # Create RAM
    memory = architecture_module.PhysicalMemory(machine_config["memspace"])

    return architecture_module.Machine(cpu, mmu, memory, **kwargs)

get_miasm_machine()

Get the Miasm machine

Aimed to be overloaded by child classes

Returns:

Type Description

the Miasm machine

Source code in mmushell/architectures/generic.py
519
520
521
522
523
524
525
526
527
def get_miasm_machine(self):
    """Get the Miasm machine

    Aimed to be overloaded by child classes

    Returns:
        the Miasm machine
    """
    return None

PAS dataclass

Represents a Physical Address Space

The Physical Address Space (PAS) is a hierarchical data structure that represents the SAS of the physical memory. The PAS is composed of a set of entries, each one representing a set of contiguous physical addresses with the same permissions. The PAS is organized in a hierarchical way, where each entry is identified by a set of permissions and contains a set of intervals of contiguous physical addresses.

Attributes:

Name Type Description
space Dict

the space of the PAS

space_size Dict

the size of the space

Note: those attributes are initialized as defaultdicts to avoid the need of checking if a key is present before accessing it

Source code in mmushell/architectures/generic.py
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
@dataclass
class PAS:
    """Represents a Physical Address Space

    The Physical Address Space (PAS) is a hierarchical data structure that represents the SAS of the physical memory.
    The PAS is composed of a set of entries, each one representing a set of contiguous physical addresses with the same permissions.
    The PAS is organized in a hierarchical way, where each entry is identified by a set of permissions and contains a set of intervals of contiguous physical addresses.

    Attributes:
        space: the space of the PAS
        space_size: the size of the space

    Note: those attributes are initialized as defaultdicts to avoid the need of checking if a key is present before accessing it
    """

    space: Dict = field(default_factory=lambda: defaultdict(dict))
    space_size: Dict = field(default_factory=lambda: defaultdict(int))

    def hierarchical_extend(self, other, uperms):
        """Extend this PAS with another PAS

        Args:
            other: the other PAS to extend with
            uperms: the permissions to use
        """
        for perm in other.space:
            new_perm = []
            for i in range(6):
                new_perm.append(perm[i] and uperms[i])
            new_perm = tuple(new_perm)
            self.space[new_perm].update(other.space[perm])
            self.space_size[new_perm] += other.space_size[perm]

    def __contains__(self, key):
        """Check if a key is present in the PAS

        Args:
            key: the key to check

        Returns:
            True if the key is present, False otherwise
        """
        for addresses in self.space.values():
            for address in addresses:
                if address <= key < address + addresses[address]:
                    return True
        return False

    def is_in_kernel_space(self, key):
        """Check if a key is in the kernel space

        Args:
            key: the key to check

        Returns:
            True if the key is in the kernel space, False otherwise
        """
        for perms, addresses in self.space.items():
            if perms[0] or perms[1] or perms[2]:
                for address in addresses:
                    if address <= key < address + addresses[address]:
                        return True
        return False

    def is_in_kernel_x_space(self, key):
        """Check if a key is in the kernel executable space

        Args:
            key: the key to check

        Returns:
            True if the key is in the kernel executable space, False otherwise
        """
        for perms, addresses in self.space.items():
            if perms[0] and perms[2]:
                for address in addresses:
                    if address <= key < address + addresses[address]:
                        return True
        return False

    def is_in_user_space(self, key):
        """Check if a key is in the user space

        Args:
            key: the key to check

        Returns:
            True if the key is in the user space, False otherwise
        """
        for perms, addresses in self.space.items():
            if not (perms[0] or perms[1] or perms[2]):
                for address in addresses:
                    if address <= key < address + addresses[address]:
                        return True
        return False

    def __repr__(self):
        """String representation of the PAS"""
        ret = ""
        for perm in self.space:
            symb = lambda x, s: s if x else "-"
            ret += "{}{}{} {}{}{}: {}\n".format(
                symb(perm[0], "R"),
                symb(perm[1], "W"),
                symb(perm[2], "X"),
                symb(perm[3], "R"),
                symb(perm[4], "W"),
                symb(perm[5], "X"),
                self.space_size[perm],
            )
        return ret

    def get_kernel_size(self):
        """Get the size of the kernel space"""
        size = 0
        for perm in self.space:
            if not (perm[3] or perm[4] or perm[5]):
                size += self.space_size[perm]
        return size

    def get_user_size(self):
        """Get the size of the user space"""
        size = 0
        for perm in self.space:
            if perm[3] or perm[4] or perm[5]:
                size += self.space_size[perm]
        return size

__contains__(key)

Check if a key is present in the PAS

Parameters:

Name Type Description Default
key

the key to check

required

Returns:

Type Description

True if the key is present, False otherwise

Source code in mmushell/architectures/generic.py
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def __contains__(self, key):
    """Check if a key is present in the PAS

    Args:
        key: the key to check

    Returns:
        True if the key is present, False otherwise
    """
    for addresses in self.space.values():
        for address in addresses:
            if address <= key < address + addresses[address]:
                return True
    return False

__repr__()

String representation of the PAS

Source code in mmushell/architectures/generic.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def __repr__(self):
    """String representation of the PAS"""
    ret = ""
    for perm in self.space:
        symb = lambda x, s: s if x else "-"
        ret += "{}{}{} {}{}{}: {}\n".format(
            symb(perm[0], "R"),
            symb(perm[1], "W"),
            symb(perm[2], "X"),
            symb(perm[3], "R"),
            symb(perm[4], "W"),
            symb(perm[5], "X"),
            self.space_size[perm],
        )
    return ret

get_kernel_size()

Get the size of the kernel space

Source code in mmushell/architectures/generic.py
428
429
430
431
432
433
434
def get_kernel_size(self):
    """Get the size of the kernel space"""
    size = 0
    for perm in self.space:
        if not (perm[3] or perm[4] or perm[5]):
            size += self.space_size[perm]
    return size

get_user_size()

Get the size of the user space

Source code in mmushell/architectures/generic.py
436
437
438
439
440
441
442
def get_user_size(self):
    """Get the size of the user space"""
    size = 0
    for perm in self.space:
        if perm[3] or perm[4] or perm[5]:
            size += self.space_size[perm]
    return size

hierarchical_extend(other, uperms)

Extend this PAS with another PAS

Parameters:

Name Type Description Default
other

the other PAS to extend with

required
uperms

the permissions to use

required
Source code in mmushell/architectures/generic.py
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def hierarchical_extend(self, other, uperms):
    """Extend this PAS with another PAS

    Args:
        other: the other PAS to extend with
        uperms: the permissions to use
    """
    for perm in other.space:
        new_perm = []
        for i in range(6):
            new_perm.append(perm[i] and uperms[i])
        new_perm = tuple(new_perm)
        self.space[new_perm].update(other.space[perm])
        self.space_size[new_perm] += other.space_size[perm]

is_in_kernel_space(key)

Check if a key is in the kernel space

Parameters:

Name Type Description Default
key

the key to check

required

Returns:

Type Description

True if the key is in the kernel space, False otherwise

Source code in mmushell/architectures/generic.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
def is_in_kernel_space(self, key):
    """Check if a key is in the kernel space

    Args:
        key: the key to check

    Returns:
        True if the key is in the kernel space, False otherwise
    """
    for perms, addresses in self.space.items():
        if perms[0] or perms[1] or perms[2]:
            for address in addresses:
                if address <= key < address + addresses[address]:
                    return True
    return False

is_in_kernel_x_space(key)

Check if a key is in the kernel executable space

Parameters:

Name Type Description Default
key

the key to check

required

Returns:

Type Description

True if the key is in the kernel executable space, False otherwise

Source code in mmushell/architectures/generic.py
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
def is_in_kernel_x_space(self, key):
    """Check if a key is in the kernel executable space

    Args:
        key: the key to check

    Returns:
        True if the key is in the kernel executable space, False otherwise
    """
    for perms, addresses in self.space.items():
        if perms[0] and perms[2]:
            for address in addresses:
                if address <= key < address + addresses[address]:
                    return True
    return False

is_in_user_space(key)

Check if a key is in the user space

Parameters:

Name Type Description Default
key

the key to check

required

Returns:

Type Description

True if the key is in the user space, False otherwise

Source code in mmushell/architectures/generic.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def is_in_user_space(self, key):
    """Check if a key is in the user space

    Args:
        key: the key to check

    Returns:
        True if the key is in the user space, False otherwise
    """
    for perms, addresses in self.space.items():
        if not (perms[0] or perms[1] or perms[2]):
            for address in addresses:
                if address <= key < address + addresses[address]:
                    return True
    return False

PageTable

Represents a Page Table

A page table is the data structure used by a virtual memory system in a computer operating system to store the mapping between virtual addresses and physical addresses.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
address

the address of the page table

size

the size of the page table

entries

the entries of the page table

levels

the levels of the page table

Source code in mmushell/architectures/generic.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class PageTable:
    """Represents a Page Table

    A page table is the data structure used by a virtual memory system in a computer operating system to store the mapping between virtual addresses and physical addresses.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        address: the address of the page table
        size: the size of the page table
        entries: the entries of the page table
        levels: the levels of the page table
    """

    entry_size = 0

    def __init__(self, address, size, entries, levels, *args):
        """Initialize the Page Table

        Args:
            address: the address of the page table
            size: the size of the page table
            entries: the entries of the page table
            levels: the levels of the page table
            *args: additional arguments
        """
        self.address = address
        self.size = size
        self.entries = entries
        self.levels = levels

    def apply_on_entries(self, f: function, args):
        """Run a function to all the entries of the page table.

        The provided function should take an entry and the arguments as input and return the result of the operation.

        Args:
            f: the function to apply
            args: the arguments to pass to the function

        Returns:
            a list with the results of the function applied to all the entries
        """
        res = []
        for entry in self.entries:
            res.append(f(entry, args))
        return res

__init__(address, size, entries, levels, *args)

Initialize the Page Table

Parameters:

Name Type Description Default
address

the address of the page table

required
size

the size of the page table

required
entries

the entries of the page table

required
levels

the levels of the page table

required
*args

additional arguments

()
Source code in mmushell/architectures/generic.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def __init__(self, address, size, entries, levels, *args):
    """Initialize the Page Table

    Args:
        address: the address of the page table
        size: the size of the page table
        entries: the entries of the page table
        levels: the levels of the page table
        *args: additional arguments
    """
    self.address = address
    self.size = size
    self.entries = entries
    self.levels = levels

apply_on_entries(f, args)

Run a function to all the entries of the page table.

The provided function should take an entry and the arguments as input and return the result of the operation.

Parameters:

Name Type Description Default
f function

the function to apply

required
args

the arguments to pass to the function

required

Returns:

Type Description

a list with the results of the function applied to all the entries

Source code in mmushell/architectures/generic.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def apply_on_entries(self, f: function, args):
    """Run a function to all the entries of the page table.

    The provided function should take an entry and the arguments as input and return the result of the operation.

    Args:
        f: the function to apply
        args: the arguments to pass to the function

    Returns:
        a list with the results of the function applied to all the entries
    """
    res = []
    for entry in self.entries:
        res.append(f(entry, args))
    return res

PhysicalMemory

Represents the physical memory of a machine

The physical memory is composed by a set of memory regions, each one representing a set of contiguous physical addresses with the same permissions.

Attributes:

Name Type Description
_is_opened

a flag to check if the memory is opened

_miasm_vm

the Miasm VM

_memregions

the memory regions

_memsize

the size of the memory

physpace

the physical space

raw_configuration

the raw configuration of the memory

Source code in mmushell/architectures/generic.py
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
class PhysicalMemory:
    """Represents the physical memory of a machine

    The physical memory is composed by a set of memory regions, each one representing a set of contiguous physical addresses with the same permissions.

    Attributes:
        _is_opened: a flag to check if the memory is opened
        _miasm_vm: the Miasm VM
        _memregions: the memory regions
        _memsize: the size of the memory
        physpace: the physical space
        raw_configuration: the raw configuration of the memory
    """

    machine = None

    def __deepcopy__(self, memo):
        """Deepcopy the PhysicalMemory object"""
        return PhysicalMemory(self.raw_configuration)

    def __copy__(self):
        """Copy the PhysicalMemory object"""
        return PhysicalMemory(self.raw_configuration)

    def __getstate__(self):
        """Get the state of the PhysicalMemory object"""
        self.close()
        if self._miasm_vm:
            del self._miasm_vm
            self._miasm_vm = None
        state = deepcopy(self.__dict__)
        self.reopen()
        return state

    def __setstate__(self, state):
        """Set the state of the PhysicalMemory object"""
        self.__dict__.update(state)
        self.reopen()

    def __init__(self, regions_defs):
        """Initialize the PhysicalMemory

        Args:
            regions_defs: the regions definitions
        """
        self._is_opened = False
        self._miasm_vm = None
        self._memregions = []
        self._memsize = 0
        self.physpace = {"ram": portion.empty(), "not_ram": portion.empty()}
        self.raw_configuration = regions_defs

        # Load dump RAM files
        try:
            for region_def in regions_defs["ram"]:
                # Load the dump file for a memory region
                fd = open(region_def["dumpfile"], "rb")
                mm = mmap(fd.fileno(), 0, MAP_SHARED, PROT_READ)
                mm.madvise(MADV_HUGEPAGE)
                self._memsize += len(mm)
                region_size = len(mm)

                if region_size != region_def["end"] - region_def["start"] + 1:
                    raise IOError(
                        "Declared size {} is different from real size {} for: {}".format(
                            region_def["end"] - region_def["start"] + 1,
                            region_size,
                            region_def["dumpfile"],
                        )
                    )

                self._memregions.append(
                    {
                        "filename": region_def["dumpfile"],
                        "fd": fd,
                        "mmap": mm,
                        "size": region_size,
                        "start": region_def["start"],
                        "end": region_def["end"],
                    }
                )
                self.physpace["ram"] |= portion.closed(
                    region_def["start"], region_def["end"]
                )

            self._memregions.sort(key=lambda x: x["start"])
            self._is_opened = True

        except Exception as e:
            self.close()
            raise IOError("Error in opening dump files! Error: {}".format(e))

        # Load not RAM regions
        for region_def in regions_defs.get("not_ram", []):
            self.physpace["not_ram"] |= portion.closed(
                region_def["start"], region_def["end"]
            )
        self.physpace["not_valid_regions"] = self.physpace["not_ram"].difference(
            self.physpace["ram"]
        )
        self.physpace["defined_regions"] = (
            self.physpace["not_ram"] | self.physpace["ram"]
        )

    def __del__(self):
        self.close()

    def __len__(self):
        """Get the size of the memory"""
        return self._memsize

    def __contains__(self, key):
        """Check if a key is in the memory"""
        if not isinstance(key, int):
            raise TypeError
        return key in self.physpace["ram"]

    def close(self):
        """Close the memory"""
        for region in self._memregions:
            try:
                if region["mmap"] is not None:
                    region["mmap"].close()
                    del region["mmap"]
                    region["mmap"] = None
                if region["fd"] is not None:
                    region["fd"].close()
                    del region["fd"]
                    region["fd"] = None
            except Exception:
                continue
        self._is_opened = False

    def reopen(self):
        """Reopen the memory"""
        for region in self._memregions:
            region["fd"] = open(region["filename"], "rb")
            region["mmap"] = mmap(region["fd"].fileno(), 0, MAP_SHARED, PROT_READ)
            region["mmap"].madvise(MADV_HUGEPAGE)
        self._is_opened = True

    def get_data(self, start, size):
        """Get data from the memory"""
        for region in self._memregions:
            if region["start"] <= start <= region["end"]:
                return region["mmap"][
                    start - region["start"] : start - region["start"] + size
                ]
        return bytearray()

    def get_addresses(self, size, align_offset=0, cpus=1, max_address=-1):
        """Get the addresses of the memory

        Return a list contains tuples (for a total of cpus tuples).
        Each tuple contains the len of the iterator, and an iterator over part of all the addresses aligned to align_offset and distanced by size present in RAM regions.

        Args:
            size: the size of the addresses
            align_offset: the alignment offset
            cpus: the number of cpus
            max_address: the maximum address

        Returns:
            a tuple containing the total elements and the addresses
        """
        if size == 0:
            return 0, []

        ranges = []
        multi_ranges = [[] for cid in range(cpus)]
        for region in self._memregions:
            region_start = region["start"]
            region_end = region["end"]

            if region_start >= max_address > 0:
                continue

            if align_offset > region["size"]:
                continue

            if 0 < max_address < region_end:
                chunk_end = max_address
            else:
                chunk_end = region_end

            original_r = range(region_start + align_offset, chunk_end + 1, size)

            if cpus == 1:
                ranges.append(original_r)
            else:
                # Split the iterator over the region in cpus iterators
                range_size = len(original_r) // cpus * size
                if range_size <= size:
                    range_size = size
                    vcpus = len(original_r) // size
                else:
                    vcpus = cpus

                first_elem = region_start + align_offset
                multi_ranges[0].append(
                    range(first_elem, region_start + range_size, size)
                )

                prev_last = region_start + range_size
                for i in range(1, vcpus - 1):
                    r = (prev_last - align_offset - region_start) % size
                    if r == 0:
                        first_elem = prev_last
                    else:
                        first_elem = prev_last + (size - r)

                    last_elem = (i + 1) * range_size + region_start
                    multi_ranges[i].append(range(first_elem, last_elem, size))

                    prev_last = last_elem

                r = (prev_last - align_offset - region_start) % size
                if r == 0:
                    first_elem = prev_last
                else:
                    first_elem = prev_last + (size - r)

                if first_elem > chunk_end:
                    continue
                multi_ranges[vcpus - 1].append(range(first_elem, chunk_end + 1, size))

        if cpus == 1:
            total_elems = sum([len(x) for x in ranges])
            return total_elems, [total_elems, chain(*ranges)]
        else:
            total_elems = 0
            for cid in range(cpus):
                elems_in_iter = sum([len(x) for x in multi_ranges[cid]])
                total_elems += elems_in_iter
                multi_ranges[cid] = (elems_in_iter, chain(*multi_ranges[cid]))
            return total_elems, multi_ranges

    def get_miasm_vmmngr(self):
        """Load each RAM file in a MIASM virtual memory region

        Returns:
            the Miasm VM
        """
        if self._miasm_vm is not None:
            return self._miasm_vm

        vm = Vm()
        for region_def in self._memregions:
            vm.add_memory_page(
                region_def["start"],
                PAGE_READ | PAGE_WRITE | PAGE_EXEC,
                region_def["fd"].read(),
                region_def["filename"],
            )
            region_def["fd"].seek(0)
        self._miasm_vm = vm
        return self._miasm_vm

    def get_memregions(self):
        """Get the memory regions"""
        return self._memregions

    def free_miasm_memory(self):
        """Free the Miasm memory"""
        if self._miasm_vm:
            self._miasm_vm = None
            gc.collect()

__contains__(key)

Check if a key is in the memory

Source code in mmushell/architectures/generic.py
1300
1301
1302
1303
1304
def __contains__(self, key):
    """Check if a key is in the memory"""
    if not isinstance(key, int):
        raise TypeError
    return key in self.physpace["ram"]

__copy__()

Copy the PhysicalMemory object

Source code in mmushell/architectures/generic.py
1209
1210
1211
def __copy__(self):
    """Copy the PhysicalMemory object"""
    return PhysicalMemory(self.raw_configuration)

__deepcopy__(memo)

Deepcopy the PhysicalMemory object

Source code in mmushell/architectures/generic.py
1205
1206
1207
def __deepcopy__(self, memo):
    """Deepcopy the PhysicalMemory object"""
    return PhysicalMemory(self.raw_configuration)

__getstate__()

Get the state of the PhysicalMemory object

Source code in mmushell/architectures/generic.py
1213
1214
1215
1216
1217
1218
1219
1220
1221
def __getstate__(self):
    """Get the state of the PhysicalMemory object"""
    self.close()
    if self._miasm_vm:
        del self._miasm_vm
        self._miasm_vm = None
    state = deepcopy(self.__dict__)
    self.reopen()
    return state

__init__(regions_defs)

Initialize the PhysicalMemory

Parameters:

Name Type Description Default
regions_defs

the regions definitions

required
Source code in mmushell/architectures/generic.py
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
def __init__(self, regions_defs):
    """Initialize the PhysicalMemory

    Args:
        regions_defs: the regions definitions
    """
    self._is_opened = False
    self._miasm_vm = None
    self._memregions = []
    self._memsize = 0
    self.physpace = {"ram": portion.empty(), "not_ram": portion.empty()}
    self.raw_configuration = regions_defs

    # Load dump RAM files
    try:
        for region_def in regions_defs["ram"]:
            # Load the dump file for a memory region
            fd = open(region_def["dumpfile"], "rb")
            mm = mmap(fd.fileno(), 0, MAP_SHARED, PROT_READ)
            mm.madvise(MADV_HUGEPAGE)
            self._memsize += len(mm)
            region_size = len(mm)

            if region_size != region_def["end"] - region_def["start"] + 1:
                raise IOError(
                    "Declared size {} is different from real size {} for: {}".format(
                        region_def["end"] - region_def["start"] + 1,
                        region_size,
                        region_def["dumpfile"],
                    )
                )

            self._memregions.append(
                {
                    "filename": region_def["dumpfile"],
                    "fd": fd,
                    "mmap": mm,
                    "size": region_size,
                    "start": region_def["start"],
                    "end": region_def["end"],
                }
            )
            self.physpace["ram"] |= portion.closed(
                region_def["start"], region_def["end"]
            )

        self._memregions.sort(key=lambda x: x["start"])
        self._is_opened = True

    except Exception as e:
        self.close()
        raise IOError("Error in opening dump files! Error: {}".format(e))

    # Load not RAM regions
    for region_def in regions_defs.get("not_ram", []):
        self.physpace["not_ram"] |= portion.closed(
            region_def["start"], region_def["end"]
        )
    self.physpace["not_valid_regions"] = self.physpace["not_ram"].difference(
        self.physpace["ram"]
    )
    self.physpace["defined_regions"] = (
        self.physpace["not_ram"] | self.physpace["ram"]
    )

__len__()

Get the size of the memory

Source code in mmushell/architectures/generic.py
1296
1297
1298
def __len__(self):
    """Get the size of the memory"""
    return self._memsize

__setstate__(state)

Set the state of the PhysicalMemory object

Source code in mmushell/architectures/generic.py
1223
1224
1225
1226
def __setstate__(self, state):
    """Set the state of the PhysicalMemory object"""
    self.__dict__.update(state)
    self.reopen()

close()

Close the memory

Source code in mmushell/architectures/generic.py
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
def close(self):
    """Close the memory"""
    for region in self._memregions:
        try:
            if region["mmap"] is not None:
                region["mmap"].close()
                del region["mmap"]
                region["mmap"] = None
            if region["fd"] is not None:
                region["fd"].close()
                del region["fd"]
                region["fd"] = None
        except Exception:
            continue
    self._is_opened = False

free_miasm_memory()

Free the Miasm memory

Source code in mmushell/architectures/generic.py
1451
1452
1453
1454
1455
def free_miasm_memory(self):
    """Free the Miasm memory"""
    if self._miasm_vm:
        self._miasm_vm = None
        gc.collect()

get_addresses(size, align_offset=0, cpus=1, max_address=-1)

Get the addresses of the memory

Return a list contains tuples (for a total of cpus tuples). Each tuple contains the len of the iterator, and an iterator over part of all the addresses aligned to align_offset and distanced by size present in RAM regions.

Parameters:

Name Type Description Default
size

the size of the addresses

required
align_offset

the alignment offset

0
cpus

the number of cpus

1
max_address

the maximum address

-1

Returns:

Type Description

a tuple containing the total elements and the addresses

Source code in mmushell/architectures/generic.py
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
def get_addresses(self, size, align_offset=0, cpus=1, max_address=-1):
    """Get the addresses of the memory

    Return a list contains tuples (for a total of cpus tuples).
    Each tuple contains the len of the iterator, and an iterator over part of all the addresses aligned to align_offset and distanced by size present in RAM regions.

    Args:
        size: the size of the addresses
        align_offset: the alignment offset
        cpus: the number of cpus
        max_address: the maximum address

    Returns:
        a tuple containing the total elements and the addresses
    """
    if size == 0:
        return 0, []

    ranges = []
    multi_ranges = [[] for cid in range(cpus)]
    for region in self._memregions:
        region_start = region["start"]
        region_end = region["end"]

        if region_start >= max_address > 0:
            continue

        if align_offset > region["size"]:
            continue

        if 0 < max_address < region_end:
            chunk_end = max_address
        else:
            chunk_end = region_end

        original_r = range(region_start + align_offset, chunk_end + 1, size)

        if cpus == 1:
            ranges.append(original_r)
        else:
            # Split the iterator over the region in cpus iterators
            range_size = len(original_r) // cpus * size
            if range_size <= size:
                range_size = size
                vcpus = len(original_r) // size
            else:
                vcpus = cpus

            first_elem = region_start + align_offset
            multi_ranges[0].append(
                range(first_elem, region_start + range_size, size)
            )

            prev_last = region_start + range_size
            for i in range(1, vcpus - 1):
                r = (prev_last - align_offset - region_start) % size
                if r == 0:
                    first_elem = prev_last
                else:
                    first_elem = prev_last + (size - r)

                last_elem = (i + 1) * range_size + region_start
                multi_ranges[i].append(range(first_elem, last_elem, size))

                prev_last = last_elem

            r = (prev_last - align_offset - region_start) % size
            if r == 0:
                first_elem = prev_last
            else:
                first_elem = prev_last + (size - r)

            if first_elem > chunk_end:
                continue
            multi_ranges[vcpus - 1].append(range(first_elem, chunk_end + 1, size))

    if cpus == 1:
        total_elems = sum([len(x) for x in ranges])
        return total_elems, [total_elems, chain(*ranges)]
    else:
        total_elems = 0
        for cid in range(cpus):
            elems_in_iter = sum([len(x) for x in multi_ranges[cid]])
            total_elems += elems_in_iter
            multi_ranges[cid] = (elems_in_iter, chain(*multi_ranges[cid]))
        return total_elems, multi_ranges

get_data(start, size)

Get data from the memory

Source code in mmushell/architectures/generic.py
1330
1331
1332
1333
1334
1335
1336
1337
def get_data(self, start, size):
    """Get data from the memory"""
    for region in self._memregions:
        if region["start"] <= start <= region["end"]:
            return region["mmap"][
                start - region["start"] : start - region["start"] + size
            ]
    return bytearray()

get_memregions()

Get the memory regions

Source code in mmushell/architectures/generic.py
1447
1448
1449
def get_memregions(self):
    """Get the memory regions"""
    return self._memregions

get_miasm_vmmngr()

Load each RAM file in a MIASM virtual memory region

Returns:

Type Description

the Miasm VM

Source code in mmushell/architectures/generic.py
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
def get_miasm_vmmngr(self):
    """Load each RAM file in a MIASM virtual memory region

    Returns:
        the Miasm VM
    """
    if self._miasm_vm is not None:
        return self._miasm_vm

    vm = Vm()
    for region_def in self._memregions:
        vm.add_memory_page(
            region_def["start"],
            PAGE_READ | PAGE_WRITE | PAGE_EXEC,
            region_def["fd"].read(),
            region_def["filename"],
        )
        region_def["fd"].seek(0)
    self._miasm_vm = vm
    return self._miasm_vm

reopen()

Reopen the memory

Source code in mmushell/architectures/generic.py
1322
1323
1324
1325
1326
1327
1328
def reopen(self):
    """Reopen the memory"""
    for region in self._memregions:
        region["fd"] = open(region["filename"], "rb")
        region["mmap"] = mmap(region["fd"].fileno(), 0, MAP_SHARED, PROT_READ)
        region["mmap"].madvise(MADV_HUGEPAGE)
    self._is_opened = True

RadixTree

Represents a Radix Tree

Radix trees maintain a hierarchical representation of the SAS. Each tree is composed by N-1 levels of directory tables, each containing entries that either point to tables of the lower level or to a physical memory page (huge pages), whose size depends on the level itself. The final level is composed of page tables that point only to same-size physical memory pages. The tree root is the physical address of the directory table of Level 0 and it identifies uniquely the SAS and, consequently, the process to which it is assigned. This address is stored in a special system register (here generically called RADIX_ROOT) by the operating system and it is used by the MMU to locate the radix tree when it starts a new translation. The translation performed by the MMU starts from the root table pointed by the address contained in RADIX_ROOT: the MMU then divides the segmented address into two parts: a prefix and a page offset. The prefix part is divided into a series of N chunks that represent the hierarchical sequence of indexes to be used to locate the entry inside a table of the corresponding level. This process ends when an entry points to a physical page. At this point, the MMU returns the concatenation of the page offset extracted by the segmented address to the physical page address found in the last page table entry.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
top_table

the address of the top table

init_level

the initial level of the radix tree

pas

the Physical Address Space

vas

the Virtual Address Space

kernel

if the kernel space is enabled

user

if the user space is enabled

Source code in mmushell/architectures/generic.py
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
class RadixTree:
    """Represents a Radix Tree

    Radix trees maintain a hierarchical representation of the SAS. Each tree is composed by N-1 levels of
    directory tables, each containing entries that either point to tables of the lower level or to a physical
    memory page (huge pages), whose size depends on the level itself.
    The final level is composed of page tables that point only to same-size physical memory pages.
    The tree root is the physical address of the directory table of Level 0 and it identifies uniquely the SAS
    and, consequently, the process to which it is assigned. This address is stored in a special system register
    (here generically called RADIX_ROOT) by the operating system and it is used by the MMU to locate the radix
    tree when it starts a new translation.
    The translation performed by the MMU starts from the root table pointed by the address contained in RADIX_ROOT:
    the MMU then divides the segmented address into two parts: a prefix and a page offset.
    The prefix part is divided into a series of N chunks that represent the hierarchical sequence of indexes to be
    used to locate the entry inside a table of the corresponding level. This process ends when an entry points to
    a physical page. At this point, the MMU returns the concatenation of the page offset extracted by the segmented
    address to the physical page address found in the last page table entry.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        top_table: the address of the top table
        init_level: the initial level of the radix tree
        pas: the Physical Address Space
        vas: the Virtual Address Space
        kernel: if the kernel space is enabled
        user: if the user space is enabled
    """

    labels = [
        "Radix address",
        "First level",
        "Kernel size (Bytes)",
        "User size (Bytes)",
    ]
    addr_fmt = "0x{:016x}"

    def __init__(self, top_table, init_level, pas, vas, kernel=True, user=True):
        """Initialize the Radix Tree

        Args:
            top_table: the address of the top table
            init_level: the initial level of the radix tree
            pas: the Physical Address Space
            vas: the Virtual Address Space
            kernel: if the kernel space is enabled
            user: if the user space is enabled
        """
        self.top_table = top_table
        self.init_level = init_level
        self.pas = pas
        self.vas = vas
        self.kernel = kernel
        self.user = user

    def __repr__(self):
        """String representation of the Radix Tree"""
        e_resume = self.entry_resume_stringified()
        return str(
            [self.labels[i] + ": " + str(e_resume[i]) for i in range(len(self.labels))]
        )

    def entry_resume(self) -> list:
        """Get the resume of the Radix Tree

        Returns:
            a list with the resume of the Radix Tree
        """
        return [
            self.top_table,
            self.init_level,
            self.pas.get_kernel_size(),
            self.pas.get_user_size(),
        ]

    def entry_resume_stringified(self) -> list:
        """Get the resume of the Radix Tree as string

        Returns:
            a list with the resume of the Radix Tree as string
        """
        res = self.entry_resume()
        res[0] = self.addr_fmt.format(res[0])
        for idx, r in enumerate(res[1:], start=1):
            res[idx] = str(r)
        return res

__init__(top_table, init_level, pas, vas, kernel=True, user=True)

Initialize the Radix Tree

Parameters:

Name Type Description Default
top_table

the address of the top table

required
init_level

the initial level of the radix tree

required
pas

the Physical Address Space

required
vas

the Virtual Address Space

required
kernel

if the kernel space is enabled

True
user

if the user space is enabled

True
Source code in mmushell/architectures/generic.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def __init__(self, top_table, init_level, pas, vas, kernel=True, user=True):
    """Initialize the Radix Tree

    Args:
        top_table: the address of the top table
        init_level: the initial level of the radix tree
        pas: the Physical Address Space
        vas: the Virtual Address Space
        kernel: if the kernel space is enabled
        user: if the user space is enabled
    """
    self.top_table = top_table
    self.init_level = init_level
    self.pas = pas
    self.vas = vas
    self.kernel = kernel
    self.user = user

__repr__()

String representation of the Radix Tree

Source code in mmushell/architectures/generic.py
238
239
240
241
242
243
def __repr__(self):
    """String representation of the Radix Tree"""
    e_resume = self.entry_resume_stringified()
    return str(
        [self.labels[i] + ": " + str(e_resume[i]) for i in range(len(self.labels))]
    )

entry_resume()

Get the resume of the Radix Tree

Returns:

Type Description
list

a list with the resume of the Radix Tree

Source code in mmushell/architectures/generic.py
245
246
247
248
249
250
251
252
253
254
255
256
def entry_resume(self) -> list:
    """Get the resume of the Radix Tree

    Returns:
        a list with the resume of the Radix Tree
    """
    return [
        self.top_table,
        self.init_level,
        self.pas.get_kernel_size(),
        self.pas.get_user_size(),
    ]

entry_resume_stringified()

Get the resume of the Radix Tree as string

Returns:

Type Description
list

a list with the resume of the Radix Tree as string

Source code in mmushell/architectures/generic.py
258
259
260
261
262
263
264
265
266
267
268
def entry_resume_stringified(self) -> list:
    """Get the resume of the Radix Tree as string

    Returns:
        a list with the resume of the Radix Tree as string
    """
    res = self.entry_resume()
    res[0] = self.addr_fmt.format(res[0])
    for idx, r in enumerate(res[1:], start=1):
        res[idx] = str(r)
    return res

TableEntry

Represents a table Page Table Entry

It holds the mapping between a virtual address of a page and the address of a physical frame. There is also auxiliary information about the page such as a present bit, a dirty or modified bit, address space or process ID information, amongst others.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
address

the virtual address of the page

flags

the flags of the page

Source code in mmushell/architectures/generic.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
class TableEntry:
    """Represents a table Page Table Entry

    It holds the mapping between a virtual address of a page and the address of a physical frame.
    There is also auxiliary information about the page such as a present bit, a dirty or modified bit, address space or process ID information, amongst others.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        address: the virtual address of the page
        flags: the flags of the page
    """

    def __init__(self, address, flags, *args):
        """Initialize the Table Entry

        Args:
            address: the virtual address of the page
            flags: the flags of the page
            *args: additional arguments
        """
        self.address = address
        self.flags = flags

__init__(address, flags, *args)

Initialize the Table Entry

Parameters:

Name Type Description Default
address

the virtual address of the page

required
flags

the flags of the page

required
*args

additional arguments

()
Source code in mmushell/architectures/generic.py
 99
100
101
102
103
104
105
106
107
108
def __init__(self, address, flags, *args):
    """Initialize the Table Entry

    Args:
        address: the virtual address of the page
        flags: the flags of the page
        *args: additional arguments
    """
    self.address = address
    self.flags = flags

VAS

Bases: defaultdict

Represents a Virtual Address Space

The Virtual Address Space (VAS) is a hierarchical data structure that represents the SAS of a process. The VAS is composed of a set of entries, each one representing a set of contiguous virtual addresses with the same permissions. The VAS is organized in a hierarchical way, where each entry is identified by a set of permissions and contains a set of intervals of contiguous virtual addresses.

Aimed to be inherited by child classes to represent different architectures

Attributes:

Name Type Description
default_factory

the default interval for the VAS

Note: the default_factory is initialized as an empty interval to avoid the need of checking if a key is present before accessing it

Source code in mmushell/architectures/generic.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class VAS(defaultdict):
    """Represents a Virtual Address Space

    The Virtual Address Space (VAS) is a hierarchical data structure that represents the SAS of a process.
    The VAS is composed of a set of entries, each one representing a set of contiguous virtual addresses
    with the same permissions. The VAS is organized in a hierarchical way, where each entry is identified by
    a set of permissions and contains a set of intervals of contiguous virtual addresses.

    Aimed to be inherited by child classes to represent different architectures

    Attributes:
        default_factory: the default interval for the VAS

    Note: the default_factory is initialized as an empty interval to avoid the need of checking if a key is present before accessing it
    """

    def __init__(self, *args, **kwargs):
        super(VAS, self).__init__()
        self.default_factory = portion.empty

    def __repr__(self):
        """String representation of the VAS"""
        s = ""
        for k in self:
            k_str = perms_bool_to_string(*k)
            s += k_str + "\n"
            for interval in self[k]:
                s += f"\t[{hex(interval.lower)}, {hex(interval.upper)}]\n"
        return s

    def hierarchical_extend(self, other, uperms):
        """Extend this VAS with another VAS

        Args:
            other: the other VAS to extend with
            uperms: the permissions to use
        """
        for perm in other:
            new_perm = []
            for i in range(6):
                new_perm.append(perm[i] and uperms[i])
            new_perm = tuple(new_perm)
            self[new_perm] |= other[perm]

__repr__()

String representation of the VAS

Source code in mmushell/architectures/generic.py
291
292
293
294
295
296
297
298
299
def __repr__(self):
    """String representation of the VAS"""
    s = ""
    for k in self:
        k_str = perms_bool_to_string(*k)
        s += k_str + "\n"
        for interval in self[k]:
            s += f"\t[{hex(interval.lower)}, {hex(interval.upper)}]\n"
    return s

hierarchical_extend(other, uperms)

Extend this VAS with another VAS

Parameters:

Name Type Description Default
other

the other VAS to extend with

required
uperms

the permissions to use

required
Source code in mmushell/architectures/generic.py
301
302
303
304
305
306
307
308
309
310
311
312
313
def hierarchical_extend(self, other, uperms):
    """Extend this VAS with another VAS

    Args:
        other: the other VAS to extend with
        uperms: the permissions to use
    """
    for perm in other:
        new_perm = []
        for i in range(6):
            new_perm.append(perm[i] and uperms[i])
        new_perm = tuple(new_perm)
        self[new_perm] |= other[perm]

perms_bool_to_string(kr, kw, kx, r, w, x)

Convert a set of permissions from boolean to string

Parameters:

Name Type Description Default
kr

read permission for the kernel

required
kw

write permission for the kernel

required
kx

execute permission for the kernel

required
r

read permission for the user

required
w

write permission for the user

required
x

execute permission for the user

required

Returns:

Type Description

a string with the permissions

Source code in mmushell/architectures/generic.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def perms_bool_to_string(kr, kw, kx, r, w, x):
    """Convert a set of permissions from boolean to string

    Args:
        kr: read permission for the kernel
        kw: write permission for the kernel
        kx: execute permission for the kernel
        r: read permission for the user
        w: write permission for the user
        x: execute permission for the user

    Returns:
        a string with the permissions
    """
    perm_s = "R" if kr else "-"
    perm_s += "W" if kw else "-"
    perm_s += "X" if kx else "-"
    perm_s += "r" if r else "-"
    perm_s += "w" if w else "-"
    perm_s += "x" if x else "-"
    return perm_s