Skip to content

Exporter

Exporter

AddressTranslator

Source code in mmushell/exporter.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
class AddressTranslator:
    def __init__(self, dtb, phy):
        self.dtb = dtb
        self.phy = phy

        # Set machine specifics
        if self.wordsize == 4:
            self.word_type = np.uint32
            if self.phy.machine_data["Endianness"] == "big":
                self.word_fmt = ">u4"
            else:
                self.word_fmt = "<u4"
        else:
            self.word_type = np.uint64
            if self.phy.machine_data["Endianness"] == "big":
                self.word_fmt = ">u8"
            else:
                self.word_fmt = "<u8"

        self.v2o = None
        self.o2v = None
        self.pmasks = None
        self.minimum_page = 0

    def _read_entry(self, idx, entry, lvl):
        """Decode radix tree entry"""
        raise NotImplementedError

    def _reconstruct_permissions(self, pmask):
        """Reconstruct permission masks from radix tree entry"""
        raise NotImplementedError

    def _finalize_virt_addr(self, virt_addr, permissions):
        """Apply architecture specific virtual address modifications"""
        raise NotImplementedError

    def get_data_virt(self, vaddr, size=1):
        """Return data starting from a virtual address"""
        size_available, intervals = self.v2o.contains(vaddr, size)
        if size_available != size:
            return bytes()

        ret = bytearray()
        for interval in intervals:
            _, interval_size, offset = interval
            ret.extend(self.elf_buf[offset : offset + interval_size].tobytes())

        return ret

    def get_data_phy(self, paddr, size):
        """Return data starting from a physical address"""
        return self.phy.get_data(paddr, size)

    def get_data_raw(self, offset, size):
        """Return data starting from an ELF offset"""
        return self.phy.get_data_raw(offset, size)

    def _explore_radixtree(
        self, table_addr, mapping, reverse_mapping, lvl=0, prefix=0, upmask=list()
    ):
        """Explore the radix tree returning virtual <-> physical mappings"""

        table = self.phy.get_data(table_addr, self.table_sizes[lvl])
        if not table:
            print(
                f"Table {hex(table_addr)} size:{self.table_sizes[lvl]} at level {lvl} not in RAM"
            )
            return

        for index, entry in enumerate(iter_unpack(self.unpack_fmt, table)):
            is_valid, pmask, phy_addr, page_size = self._read_entry(
                index, entry[0], lvl
            )

            if not is_valid:
                continue

            virt_addr = prefix | (index << self.shifts[lvl])
            pmask = upmask + pmask

            if (lvl == self.total_levels - 1) or page_size:  # Last radix level or Leaf
                # Ignore pages not in RAM (some OSs map more RAM than available) and not memory mapped devices
                in_ram = self.phy.in_ram(phy_addr, page_size)
                in_mmd = self.phy.in_mmd(phy_addr, page_size)
                if not in_ram and not in_mmd:
                    continue

                permissions = self._reconstruct_permissions(pmask)
                virt_addr = self._finalize_virt_addr(virt_addr, permissions)
                mapping[permissions].append((virt_addr, page_size, phy_addr, in_mmd))

                # Add only RAM address to the reverse translation P2V
                if in_ram and not in_mmd:
                    if permissions not in reverse_mapping:
                        reverse_mapping[permissions] = defaultdict(list)
                    reverse_mapping[permissions][(phy_addr, page_size)].append(
                        virt_addr
                    )
            else:
                # Lower level entry
                self._explore_radixtree(
                    phy_addr,
                    mapping,
                    reverse_mapping,
                    lvl=lvl + 1,
                    prefix=virt_addr,
                    upmask=pmask,
                )

    def _compact_intervals_virt_offset(self, intervals):
        """Compact intervals if virtual addresses and offsets values are
        contigous (virt -> offset)"""
        fused_intervals = []
        prev_begin = prev_end = prev_offset = -1
        for interval in intervals:
            begin, end, phy, _ = interval

            offset = self.phy.p2o[phy]
            if offset == -1:
                continue

            if prev_end == begin and prev_offset + (prev_end - prev_begin) == offset:
                prev_end = end
            else:
                fused_intervals.append((prev_begin, (prev_end, prev_offset)))
                prev_begin = begin
                prev_end = end
                prev_offset = offset

        if prev_begin != begin:
            fused_intervals.append((prev_begin, (prev_end, prev_offset)))
        else:
            offset = self.phy.p2o[phy]
            if offset == -1:
                print(f"ERROR!! {phy}")
            else:
                fused_intervals.append((begin, (end, offset)))
        return fused_intervals[1:]

    def _compact_intervals_permissions(self, intervals):
        """Compact intervals if virtual addresses are contigous and permissions are equals"""
        fused_intervals = []
        prev_begin = prev_end = -1
        prev_pmask = (0, 0)
        for interval in intervals:
            begin, end, _, pmask = interval
            if prev_end == begin and prev_pmask == pmask:
                prev_end = end
            else:
                fused_intervals.append((prev_begin, (prev_end, prev_pmask)))
                prev_begin = begin
                prev_end = end
                prev_pmask = pmask

        if prev_begin != begin:
            fused_intervals.append((prev_begin, (prev_end, prev_pmask)))
        else:
            fused_intervals.append((begin, (end, pmask)))

        return fused_intervals[1:]

    def _reconstruct_mappings(self, table_addr, upmask):
        # Explore the radix tree
        mapping = defaultdict(list)
        reverse_mapping = {}
        self._explore_radixtree(table_addr, mapping, reverse_mapping, upmask=upmask)

        # Needed for ELF virtual mapping reconstruction
        self.reverse_mapping = reverse_mapping
        self.mapping = mapping

        # Collect all intervals (start, end+1, phy_page, pmask)
        intervals = []
        for pmask, mapping_p in mapping.items():
            if pmask[1] == 0:  # Ignore user not accessible pages
                print(pmask)
                continue
            intervals.extend(
                [(x[0], x[0] + x[1], x[2], pmask) for x in mapping_p if not x[3]]
            )  # Ignore MMD
        intervals.sort()

        if not intervals:
            raise Exception
        # Fuse intervals in order to reduce the number of elements to speed up
        fused_intervals_v2o = self._compact_intervals_virt_offset(intervals)
        fused_intervals_permissions = self._compact_intervals_permissions(intervals)

        # Offset to virtual is impossible to compact in a easy way due to the
        # multiple-to-one mapping. We order the array and use bisection to find
        # the possible results and a partial
        intervals_o2v = []
        for pmasks, d in reverse_mapping.items():
            if pmasks[1] != 0:  # Ignore user accessible pages
                continue
            for k, v in d.items():
                # We have to translate phy -> offset
                offset = self.phy.p2o[k[0]]
                if offset == -1:  # Ignore unresolvable pages
                    continue
                intervals_o2v.append((offset, k[1] + offset, tuple(v)))
        intervals_o2v.sort()

        # Fill resolution objects
        self.v2o = IMOffsets(*list(zip(*fused_intervals_v2o)))
        self.o2v = IMOverlapping(intervals_o2v)
        self.pmasks = IMData(*list(zip(*fused_intervals_permissions)))

    def export_virtual_memory_elf(self, elf_filename):
        """Create an ELF file containg the virtual address space of the process"""
        with open(elf_filename, "wb") as elf_fd:
            # Create the ELF header and write it on the file
            machine_data = self.phy.get_machine_data()
            endianness = machine_data["Endianness"]
            machine = machine_data["Architecture"].lower()

            # Create ELF main header
            if "aarch64" in machine:
                e_machine = 0xB7
            elif "arm" in machine:
                e_machine = 0x28
            elif "riscv" in machine:
                e_machine = 0xF3
            elif "x86_64" in machine:
                e_machine = 0x3E
            elif "386" in machine:
                e_machine = 0x03
            else:
                raise Exception("Unknown architecture")

            e_ehsize = 0x40
            e_phentsize = 0x38
            elf_h = bytearray(e_ehsize)
            elf_h[0x00:0x04] = b"\x7fELF"  # Magic
            elf_h[0x04] = 2  # Elf type
            elf_h[0x05] = 1 if endianness == "little" else 2  # Endianness
            elf_h[0x06] = 1  # Version
            elf_h[0x10:0x12] = 0x4.to_bytes(2, endianness)  # e_type
            elf_h[0x12:0x14] = e_machine.to_bytes(2, endianness)  # e_machine
            elf_h[0x14:0x18] = 0x1.to_bytes(4, endianness)  # e_version
            elf_h[0x34:0x36] = e_ehsize.to_bytes(2, endianness)  # e_ehsize
            elf_h[0x36:0x38] = e_phentsize.to_bytes(2, endianness)  # e_phentsize
            elf_fd.write(elf_h)

            # For each pmask try to compact intervals in order to reduce the number of segments
            intervals = defaultdict(list)
            for (kpmask, pmask), intervals_list in self.mapping.items():
                print(kpmask, pmask)

                if pmask == 0:  # Ignore pages not accessible by the process
                    continue

                intervals[pmask].extend(
                    [(x[0], x[0] + x[1], x[2]) for x in intervals_list if not x[3]]
                )  # Ignore MMD
                intervals[pmask].sort()

                if len(intervals[pmask]) == 0:
                    intervals.pop(pmask)
                    continue

                # Compact them
                fused_intervals = []
                prev_begin = prev_end = prev_offset = -1
                for interval in intervals[pmask]:
                    begin, end, phy = interval

                    offset = self.phy.p2o[phy]
                    if offset == -1:
                        continue

                    if (
                        prev_end == begin
                        and prev_offset + (prev_end - prev_begin) == offset
                    ):
                        prev_end = end
                    else:
                        fused_intervals.append([prev_begin, prev_end, prev_offset])
                        prev_begin = begin
                        prev_end = end
                        prev_offset = offset

                if prev_begin != begin:
                    fused_intervals.append([prev_begin, prev_end, prev_offset])
                else:
                    offset = self.phy.p2o[phy]
                    if offset == -1:
                        print(f"ERROR!! {phy}")
                    else:
                        fused_intervals.append([begin, end, offset])
                intervals[pmask] = sorted(
                    fused_intervals[1:], key=lambda x: x[1] - x[0], reverse=True
                )

            # Write segments in the new file and fill the program header
            p_offset = len(elf_h)
            offset2p_offset = (
                {}
            )  # Slow but more easy to implement (best way: a tree sort structure able to be updated)
            e_phnum = 0

            for pmask, interval_list in intervals.items():
                e_phnum += len(interval_list)
                for idx, interval in enumerate(interval_list):
                    begin, end, offset = interval
                    size = end - begin
                    if offset not in offset2p_offset:
                        elf_fd.write(self.phy.get_data_raw(offset, size))
                        if not self.phy.get_data_raw(offset, size):
                            print(hex(offset), hex(size))
                        new_offset = p_offset
                        p_offset += size
                        for page_idx in range(0, size, self.minimum_page):
                            offset2p_offset[offset + page_idx] = new_offset + page_idx
                    else:
                        new_offset = offset2p_offset[offset]
                    interval_list[idx].append(
                        new_offset
                    )  # Assign the new offset in the dest file

            # Create the program header containing all the segments (ignoring not in RAM pages)
            e_phoff = elf_fd.tell()
            p_header = bytes()
            for pmask, interval_list in intervals.items():
                for begin, end, offset, p_offset in interval_list:
                    p_filesz = end - begin

                    # Back convert offset to physical page
                    p_addr = self.phy.o2p[offset]
                    assert p_addr != -1

                    segment_entry = bytearray(e_phentsize)
                    segment_entry[0x00:0x04] = 0x1.to_bytes(4, endianness)  # p_type
                    segment_entry[0x04:0x08] = pmask.to_bytes(4, endianness)  # p_flags
                    segment_entry[0x10:0x18] = begin.to_bytes(8, endianness)  # p_vaddr
                    segment_entry[0x18:0x20] = p_addr.to_bytes(
                        8, endianness
                    )  # p_paddr Original physical address
                    segment_entry[0x28:0x30] = p_filesz.to_bytes(
                        8, endianness
                    )  # p_memsz
                    segment_entry[0x08:0x10] = p_offset.to_bytes(
                        8, endianness
                    )  # p_offset
                    segment_entry[0x20:0x28] = p_filesz.to_bytes(
                        8, endianness
                    )  # p_filesz

                    p_header += segment_entry

            # Write the segment header
            elf_fd.write(p_header)
            s_header_pos = (
                elf_fd.tell()
            )  # Last position written (used if we need to write segment header)

            # Modify the ELF header to point to program header
            elf_fd.seek(0x20)
            elf_fd.write(e_phoff.to_bytes(8, endianness))  # e_phoff

            # If we have more than 65535 segments we have create a special Section entry contains the
            # number of program entry (as specified in ELF64 specifications)
            if e_phnum < 65536:
                elf_fd.seek(0x38)
                elf_fd.write(e_phnum.to_bytes(2, endianness))  # e_phnum
            else:
                elf_fd.seek(0x28)
                elf_fd.write(s_header_pos.to_bytes(8, endianness))  # e_shoff
                elf_fd.seek(0x38)
                elf_fd.write(0xFFFF.to_bytes(2, endianness))  # e_phnum
                elf_fd.write(0x40.to_bytes(2, endianness))  # e_shentsize
                elf_fd.write(0x1.to_bytes(2, endianness))  # e_shnum

                section_entry = bytearray(0x40)
                section_entry[0x2C:0x30] = e_phnum.to_bytes(4, endianness)  # sh_info
                elf_fd.seek(s_header_pos)
                elf_fd.write(section_entry)

export_virtual_memory_elf(elf_filename)

Create an ELF file containg the virtual address space of the process

Source code in mmushell/exporter.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
def export_virtual_memory_elf(self, elf_filename):
    """Create an ELF file containg the virtual address space of the process"""
    with open(elf_filename, "wb") as elf_fd:
        # Create the ELF header and write it on the file
        machine_data = self.phy.get_machine_data()
        endianness = machine_data["Endianness"]
        machine = machine_data["Architecture"].lower()

        # Create ELF main header
        if "aarch64" in machine:
            e_machine = 0xB7
        elif "arm" in machine:
            e_machine = 0x28
        elif "riscv" in machine:
            e_machine = 0xF3
        elif "x86_64" in machine:
            e_machine = 0x3E
        elif "386" in machine:
            e_machine = 0x03
        else:
            raise Exception("Unknown architecture")

        e_ehsize = 0x40
        e_phentsize = 0x38
        elf_h = bytearray(e_ehsize)
        elf_h[0x00:0x04] = b"\x7fELF"  # Magic
        elf_h[0x04] = 2  # Elf type
        elf_h[0x05] = 1 if endianness == "little" else 2  # Endianness
        elf_h[0x06] = 1  # Version
        elf_h[0x10:0x12] = 0x4.to_bytes(2, endianness)  # e_type
        elf_h[0x12:0x14] = e_machine.to_bytes(2, endianness)  # e_machine
        elf_h[0x14:0x18] = 0x1.to_bytes(4, endianness)  # e_version
        elf_h[0x34:0x36] = e_ehsize.to_bytes(2, endianness)  # e_ehsize
        elf_h[0x36:0x38] = e_phentsize.to_bytes(2, endianness)  # e_phentsize
        elf_fd.write(elf_h)

        # For each pmask try to compact intervals in order to reduce the number of segments
        intervals = defaultdict(list)
        for (kpmask, pmask), intervals_list in self.mapping.items():
            print(kpmask, pmask)

            if pmask == 0:  # Ignore pages not accessible by the process
                continue

            intervals[pmask].extend(
                [(x[0], x[0] + x[1], x[2]) for x in intervals_list if not x[3]]
            )  # Ignore MMD
            intervals[pmask].sort()

            if len(intervals[pmask]) == 0:
                intervals.pop(pmask)
                continue

            # Compact them
            fused_intervals = []
            prev_begin = prev_end = prev_offset = -1
            for interval in intervals[pmask]:
                begin, end, phy = interval

                offset = self.phy.p2o[phy]
                if offset == -1:
                    continue

                if (
                    prev_end == begin
                    and prev_offset + (prev_end - prev_begin) == offset
                ):
                    prev_end = end
                else:
                    fused_intervals.append([prev_begin, prev_end, prev_offset])
                    prev_begin = begin
                    prev_end = end
                    prev_offset = offset

            if prev_begin != begin:
                fused_intervals.append([prev_begin, prev_end, prev_offset])
            else:
                offset = self.phy.p2o[phy]
                if offset == -1:
                    print(f"ERROR!! {phy}")
                else:
                    fused_intervals.append([begin, end, offset])
            intervals[pmask] = sorted(
                fused_intervals[1:], key=lambda x: x[1] - x[0], reverse=True
            )

        # Write segments in the new file and fill the program header
        p_offset = len(elf_h)
        offset2p_offset = (
            {}
        )  # Slow but more easy to implement (best way: a tree sort structure able to be updated)
        e_phnum = 0

        for pmask, interval_list in intervals.items():
            e_phnum += len(interval_list)
            for idx, interval in enumerate(interval_list):
                begin, end, offset = interval
                size = end - begin
                if offset not in offset2p_offset:
                    elf_fd.write(self.phy.get_data_raw(offset, size))
                    if not self.phy.get_data_raw(offset, size):
                        print(hex(offset), hex(size))
                    new_offset = p_offset
                    p_offset += size
                    for page_idx in range(0, size, self.minimum_page):
                        offset2p_offset[offset + page_idx] = new_offset + page_idx
                else:
                    new_offset = offset2p_offset[offset]
                interval_list[idx].append(
                    new_offset
                )  # Assign the new offset in the dest file

        # Create the program header containing all the segments (ignoring not in RAM pages)
        e_phoff = elf_fd.tell()
        p_header = bytes()
        for pmask, interval_list in intervals.items():
            for begin, end, offset, p_offset in interval_list:
                p_filesz = end - begin

                # Back convert offset to physical page
                p_addr = self.phy.o2p[offset]
                assert p_addr != -1

                segment_entry = bytearray(e_phentsize)
                segment_entry[0x00:0x04] = 0x1.to_bytes(4, endianness)  # p_type
                segment_entry[0x04:0x08] = pmask.to_bytes(4, endianness)  # p_flags
                segment_entry[0x10:0x18] = begin.to_bytes(8, endianness)  # p_vaddr
                segment_entry[0x18:0x20] = p_addr.to_bytes(
                    8, endianness
                )  # p_paddr Original physical address
                segment_entry[0x28:0x30] = p_filesz.to_bytes(
                    8, endianness
                )  # p_memsz
                segment_entry[0x08:0x10] = p_offset.to_bytes(
                    8, endianness
                )  # p_offset
                segment_entry[0x20:0x28] = p_filesz.to_bytes(
                    8, endianness
                )  # p_filesz

                p_header += segment_entry

        # Write the segment header
        elf_fd.write(p_header)
        s_header_pos = (
            elf_fd.tell()
        )  # Last position written (used if we need to write segment header)

        # Modify the ELF header to point to program header
        elf_fd.seek(0x20)
        elf_fd.write(e_phoff.to_bytes(8, endianness))  # e_phoff

        # If we have more than 65535 segments we have create a special Section entry contains the
        # number of program entry (as specified in ELF64 specifications)
        if e_phnum < 65536:
            elf_fd.seek(0x38)
            elf_fd.write(e_phnum.to_bytes(2, endianness))  # e_phnum
        else:
            elf_fd.seek(0x28)
            elf_fd.write(s_header_pos.to_bytes(8, endianness))  # e_shoff
            elf_fd.seek(0x38)
            elf_fd.write(0xFFFF.to_bytes(2, endianness))  # e_phnum
            elf_fd.write(0x40.to_bytes(2, endianness))  # e_shentsize
            elf_fd.write(0x1.to_bytes(2, endianness))  # e_shnum

            section_entry = bytearray(0x40)
            section_entry[0x2C:0x30] = e_phnum.to_bytes(4, endianness)  # sh_info
            elf_fd.seek(s_header_pos)
            elf_fd.write(section_entry)

get_data_phy(paddr, size)

Return data starting from a physical address

Source code in mmushell/exporter.py
428
429
430
def get_data_phy(self, paddr, size):
    """Return data starting from a physical address"""
    return self.phy.get_data(paddr, size)

get_data_raw(offset, size)

Return data starting from an ELF offset

Source code in mmushell/exporter.py
432
433
434
def get_data_raw(self, offset, size):
    """Return data starting from an ELF offset"""
    return self.phy.get_data_raw(offset, size)

get_data_virt(vaddr, size=1)

Return data starting from a virtual address

Source code in mmushell/exporter.py
415
416
417
418
419
420
421
422
423
424
425
426
def get_data_virt(self, vaddr, size=1):
    """Return data starting from a virtual address"""
    size_available, intervals = self.v2o.contains(vaddr, size)
    if size_available != size:
        return bytes()

    ret = bytearray()
    for interval in intervals:
        _, interval_size, offset = interval
        ret.extend(self.elf_buf[offset : offset + interval_size].tobytes())

    return ret

ELFDump

Source code in mmushell/exporter.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
class ELFDump:
    def __init__(self, elf_filename):
        self.filename = elf_filename
        self.machine_data = {}
        self.p2o = None  # Physical to RAM (ELF offset)
        self.o2p = None  # RAM (ELF offset) to Physical
        self.p2mmd = None  # Physical to Memory Mapped Devices (ELF offset)
        self.elf_buf = np.zeros(0, dtype=np.byte)
        self.elf_filename = elf_filename

        with open(self.elf_filename, "rb") as elf_fd:
            # Load the ELF in memory
            self.elf_buf = np.fromfile(elf_fd, dtype=np.byte)
            elf_fd.seek(0)

            # Parse the ELF file
            self.__read_elf_file(elf_fd)

    def __read_elf_file(self, elf_fd):
        """Parse the dump in ELF format"""
        o2p_list = []
        p2o_list = []
        p2mmd_list = []
        elf_file = ELFFile(elf_fd)

        for segm in elf_file.iter_segments():
            # NOTES
            if isinstance(segm, NoteSegment):
                for note in segm.iter_notes():
                    # Ignore NOTE genrated by other softwares
                    if note["n_name"] != "FOSSIL":
                        continue

                    # At moment only one type of note
                    if note["n_type"] != 0xDEADC0DE:
                        continue

                    # Suppose only one deadcode note
                    self.machine_data = json.loads(note["n_desc"].rstrip("\x00"))
                    self.machine_data["Endianness"] = (
                        "little"
                        if elf_file.header["e_ident"].EI_DATA == "ELFDATA2LSB"
                        else "big"
                    )
                    self.machine_data["Architecture"] = "_".join(
                        elf_file.header["e_machine"].split("_")[1:]
                    )
            else:
                # Fill arrays needed to translate physical addresses to file offsets
                r_start = segm["p_vaddr"]
                r_end = r_start + segm["p_memsz"]

                if segm["p_filesz"]:
                    p_offset = segm["p_offset"]
                    p2o_list.append((r_start, (r_end, p_offset)))
                    o2p_list.append((p_offset, (p_offset + (r_end - r_start), r_start)))
                else:
                    # device_name = "" # UNUSED
                    for device in self.machine_data[
                        "MemoryMappedDevices"
                    ]:  # Possible because NOTES always the first segment
                        if device[0] == r_start:
                            # device_name = device[1] # UNUSED
                            break
                    p2mmd_list.append((r_start, r_end))

        # Debug
        # self.p2o_list = p2o_list
        # self.o2p_list = o2p_list
        # self.p2mmd_list = p2mmd_list

        # Compact intervals
        p2o_list = self._compact_intervals(p2o_list)
        o2p_list = self._compact_intervals(o2p_list)
        p2mmd_list = self._compact_intervals_simple(p2mmd_list)

        self.p2o = IMOffsets(*list(zip(*sorted(p2o_list))))
        self.o2p = IMOffsets(*list(zip(*sorted(o2p_list))))
        self.p2mmd = IMSimple(*list(zip(*sorted(p2mmd_list))))

    def _compact_intervals_simple(self, intervals):
        """Compact intervals if pointer values are contiguos"""
        fused_intervals = []
        prev_begin = prev_end = -1
        for interval in intervals:
            begin, end = interval
            if prev_end == begin:
                prev_end = end
            else:
                fused_intervals.append((prev_begin, prev_end))
                prev_begin = begin
                prev_end = end

        if prev_begin != begin:
            fused_intervals.append((prev_begin, prev_end))
        else:
            fused_intervals.append((begin, end))

        return fused_intervals[1:]

    def _compact_intervals(self, intervals):
        """Compact intervals if pointer and pointed values are contigous"""
        fused_intervals = []
        prev_begin = prev_end = prev_phy = -1
        for interval in intervals:
            begin, (end, phy) = interval
            if prev_end == begin and prev_phy + (prev_end - prev_begin) == phy:
                prev_end = end
            else:
                fused_intervals.append((prev_begin, (prev_end, prev_phy)))
                prev_begin = begin
                prev_end = end
                prev_phy = phy

        if prev_begin != begin:
            fused_intervals.append((prev_begin, (prev_end, prev_phy)))
        else:
            fused_intervals.append((begin, (end, phy)))

        return fused_intervals[1:]

    def in_ram(self, paddr, size=1):
        """Return True if the interval is completely in RAM"""
        return self.p2o.contains(paddr, size)[0] == size

    def in_mmd(self, paddr, size=1):
        """Return True if the interval is completely in Memory mapped devices space"""
        return True if self.p2mmd.contains(paddr, size) != -1 else False

    def get_data(self, paddr, size):
        """Return the data at physical address (interval)"""
        size_available, intervals = self.p2o.contains(paddr, size)
        if size_available != size:
            return bytes()

        ret = bytearray()
        for interval in intervals:
            _, interval_size, offset = interval
            ret.extend(self.elf_buf[offset : offset + interval_size].tobytes())

        return ret

    def get_data_raw(self, offset, size=1):
        """Return the data at the offset in the ELF (interval)"""
        return self.elf_buf[offset : offset + size].tobytes()

    def get_machine_data(self):
        """Return a dict containing machine configuration"""
        return self.machine_data

    def get_ram_regions(self):
        """Return all the RAM regions of the machine and the associated offset"""
        return self.p2o.get_values()

    def get_mmd_regions(self):
        """Return all the Memory mapped devices intervals of the machine and the associated offset"""
        return self.p2mmd.get_values()

__read_elf_file(elf_fd)

Parse the dump in ELF format

Source code in mmushell/exporter.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def __read_elf_file(self, elf_fd):
    """Parse the dump in ELF format"""
    o2p_list = []
    p2o_list = []
    p2mmd_list = []
    elf_file = ELFFile(elf_fd)

    for segm in elf_file.iter_segments():
        # NOTES
        if isinstance(segm, NoteSegment):
            for note in segm.iter_notes():
                # Ignore NOTE genrated by other softwares
                if note["n_name"] != "FOSSIL":
                    continue

                # At moment only one type of note
                if note["n_type"] != 0xDEADC0DE:
                    continue

                # Suppose only one deadcode note
                self.machine_data = json.loads(note["n_desc"].rstrip("\x00"))
                self.machine_data["Endianness"] = (
                    "little"
                    if elf_file.header["e_ident"].EI_DATA == "ELFDATA2LSB"
                    else "big"
                )
                self.machine_data["Architecture"] = "_".join(
                    elf_file.header["e_machine"].split("_")[1:]
                )
        else:
            # Fill arrays needed to translate physical addresses to file offsets
            r_start = segm["p_vaddr"]
            r_end = r_start + segm["p_memsz"]

            if segm["p_filesz"]:
                p_offset = segm["p_offset"]
                p2o_list.append((r_start, (r_end, p_offset)))
                o2p_list.append((p_offset, (p_offset + (r_end - r_start), r_start)))
            else:
                # device_name = "" # UNUSED
                for device in self.machine_data[
                    "MemoryMappedDevices"
                ]:  # Possible because NOTES always the first segment
                    if device[0] == r_start:
                        # device_name = device[1] # UNUSED
                        break
                p2mmd_list.append((r_start, r_end))

    # Debug
    # self.p2o_list = p2o_list
    # self.o2p_list = o2p_list
    # self.p2mmd_list = p2mmd_list

    # Compact intervals
    p2o_list = self._compact_intervals(p2o_list)
    o2p_list = self._compact_intervals(o2p_list)
    p2mmd_list = self._compact_intervals_simple(p2mmd_list)

    self.p2o = IMOffsets(*list(zip(*sorted(p2o_list))))
    self.o2p = IMOffsets(*list(zip(*sorted(o2p_list))))
    self.p2mmd = IMSimple(*list(zip(*sorted(p2mmd_list))))

get_data(paddr, size)

Return the data at physical address (interval)

Source code in mmushell/exporter.py
338
339
340
341
342
343
344
345
346
347
348
349
def get_data(self, paddr, size):
    """Return the data at physical address (interval)"""
    size_available, intervals = self.p2o.contains(paddr, size)
    if size_available != size:
        return bytes()

    ret = bytearray()
    for interval in intervals:
        _, interval_size, offset = interval
        ret.extend(self.elf_buf[offset : offset + interval_size].tobytes())

    return ret

get_data_raw(offset, size=1)

Return the data at the offset in the ELF (interval)

Source code in mmushell/exporter.py
351
352
353
def get_data_raw(self, offset, size=1):
    """Return the data at the offset in the ELF (interval)"""
    return self.elf_buf[offset : offset + size].tobytes()

get_machine_data()

Return a dict containing machine configuration

Source code in mmushell/exporter.py
355
356
357
def get_machine_data(self):
    """Return a dict containing machine configuration"""
    return self.machine_data

get_mmd_regions()

Return all the Memory mapped devices intervals of the machine and the associated offset

Source code in mmushell/exporter.py
363
364
365
def get_mmd_regions(self):
    """Return all the Memory mapped devices intervals of the machine and the associated offset"""
    return self.p2mmd.get_values()

get_ram_regions()

Return all the RAM regions of the machine and the associated offset

Source code in mmushell/exporter.py
359
360
361
def get_ram_regions(self):
    """Return all the RAM regions of the machine and the associated offset"""
    return self.p2o.get_values()

in_mmd(paddr, size=1)

Return True if the interval is completely in Memory mapped devices space

Source code in mmushell/exporter.py
334
335
336
def in_mmd(self, paddr, size=1):
    """Return True if the interval is completely in Memory mapped devices space"""
    return True if self.p2mmd.contains(paddr, size) != -1 else False

in_ram(paddr, size=1)

Return True if the interval is completely in RAM

Source code in mmushell/exporter.py
330
331
332
def in_ram(self, paddr, size=1):
    """Return True if the interval is completely in RAM"""
    return self.p2o.contains(paddr, size)[0] == size

IMData

Fast search in intervals (begin), (end, associated data)

Source code in mmushell/exporter.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
class IMData:
    """Fast search in intervals (begin), (end, associated data)"""

    def __init__(self, keys, values):
        self.keys = keys
        self.values = values

    def __getitem__(self, x):
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        end, data = self.values[idx]
        if begin <= x < end:
            return data
        else:
            return -1

    def contains(self, x, size):
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        end, data = self.values[idx]
        if not (begin <= x < end) or x + size >= end:
            return -1
        else:
            return data

    def get_values(self):
        return zip(self.keys, self.values)

    def get_extremes(self):
        return self.keys[0], self.values[-1][0]

IMOffsets

Fast search in intervals (begin), (end, associated offset)

Source code in mmushell/exporter.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
class IMOffsets:
    """Fast search in intervals (begin), (end, associated offset)"""

    def __init__(self, keys, values):
        self.keys = keys
        self.values = values

    def __getitem__(self, x):
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        end, data = self.values[idx]
        if begin <= x < end:
            return x - begin + data
        else:
            return -1

    def contains(self, x, size):
        """Return the maximum size and the list of intervals"""
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        end, data = self.values[idx]
        if not (begin <= x < end):
            return 0, []

        intervals = [(x, min(end - x, size), x - begin + data)]
        if end - x >= size:
            return size, intervals

        # The address space requested is bigger than a single interval
        start = end
        remaining = size - (end - x)
        idx += 1
        print(start, remaining, idx)
        while idx < len(self.values):
            begin = self.keys[idx]
            end, data = self.values[idx]

            # Virtual addresses must be contigous
            if begin != start:
                return size - remaining, intervals

            interval_size = min(end - begin, remaining)
            intervals.append((start, interval_size, data))
            remaining -= interval_size
            if not remaining:
                return size, intervals
            start += interval_size
            idx += 1

    def get_values(self):
        return zip(self.keys, self.values)

    def get_extremes(self):
        return self.keys[0], self.values[-1][0]

contains(x, size)

Return the maximum size and the list of intervals

Source code in mmushell/exporter.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def contains(self, x, size):
    """Return the maximum size and the list of intervals"""
    idx = bisect(self.keys, x) - 1
    begin = self.keys[idx]
    end, data = self.values[idx]
    if not (begin <= x < end):
        return 0, []

    intervals = [(x, min(end - x, size), x - begin + data)]
    if end - x >= size:
        return size, intervals

    # The address space requested is bigger than a single interval
    start = end
    remaining = size - (end - x)
    idx += 1
    print(start, remaining, idx)
    while idx < len(self.values):
        begin = self.keys[idx]
        end, data = self.values[idx]

        # Virtual addresses must be contigous
        if begin != start:
            return size - remaining, intervals

        interval_size = min(end - begin, remaining)
        intervals.append((start, interval_size, data))
        remaining -= interval_size
        if not remaining:
            return size, intervals
        start += interval_size
        idx += 1

IMOverlapping

Fast search in overlapping intervals (begin), (end, [associated offsets])

Source code in mmushell/exporter.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class IMOverlapping:
    """Fast search in overlapping intervals (begin), (end, [associated
    offsets])"""

    def __init__(self, intervals):
        limit2changes = defaultdict(lambda: ([], []))
        for idx, (l, r, v) in enumerate(intervals):
            assert l < r
            limit2changes[l][0].append(v)
            limit2changes[r][1].append(v)
        self.limits, changes = zip(*sorted(limit2changes.items()))

        self.results = [[]]
        s = set()
        offsets = {}
        res = []
        for idx, (arrivals, departures) in enumerate(changes):
            s.difference_update(departures)
            for i in departures:
                offsets.pop(i)

            for i in s:
                offsets[i] += self.limits[idx] - self.limits[idx - 1]

            s.update(arrivals)
            for i in arrivals:
                offsets[i] = 0

            res.clear()
            for k, v in offsets.items():
                res.extend([i + v for i in k])
            self.results.append(res.copy())

    def __getitem__(self, x):
        idx = bisect(self.limits, x)
        k = x - self.limits[idx - 1]
        return [k + p for p in self.results[idx]]

    def get_values(self):
        return zip(self.limits, self.results)

IMSimple

Fast search in intervals (begin) (end)

Source code in mmushell/exporter.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class IMSimple:
    """Fast search in intervals (begin) (end)"""

    def __init__(self, keys, values):
        self.keys = keys
        self.values = values

    def __getitem__(self, x):
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        if begin <= x < self.values[idx]:
            return x - begin
        else:
            return -1

    def contains(self, x, size):
        idx = bisect(self.keys, x) - 1
        begin = self.keys[idx]
        end = self.values[idx]
        if not (begin <= x < end) or x + size >= end:
            return -1
        else:
            return x - begin

    def get_values(self):
        return zip(self.keys, self.values)

    def get_extremes(self):
        return self.keys[0], self.values[-1]

get_virtspace(phy, mmu_values)

Return a virtspace from a physical one

Source code in mmushell/exporter.py
368
369
370
371
372
373
374
375
376
def get_virtspace(phy, mmu_values):
    """Return a virtspace from a physical one"""
    architecture = phy.get_machine_data()["Architecture"].lower()
    if "riscv" in architecture:
        return RISCVTranslator.factory(phy, mmu_values)
    elif "x86" in architecture or "386" in architecture:
        return IntelTranslator.factory(phy, mmu_values)
    else:
        raise Exception("Unknown architecture")